The homomorphism h_{*} depends not only on the map $h: X \rightarrow Y$ but also on the choice of the base point x_{0}. (Once x_{0} is chosen, y_{0} is determined by h.) So some notational difficulty will arise if we want to consider several different base points for X. If x_{0} and x_{1} are two different points of X, we cannot use the same symbol h_{*} to stand for two different homomorphisms, one having domain $\pi_{1}\left(X, x_{0}\right)$ and the other having domain $\pi_{1}\left(X, x_{1}\right)$. Even if X is path connected, so these groups are isomorphic, they are still not the same group. In such a case, we shall use the notation

$$
\left(h_{x_{0}}\right)_{*}: \pi_{1}\left(X, x_{0}\right) \longrightarrow \pi_{1}\left(Y, y_{0}\right)
$$

for the first homomorphism and $\left(h_{x_{1}}\right)_{*}$ for the second. If there is only one base point under consideration, we shall omit mention of the base point and denote the induced homomorphism merely by h_{*}.

The induced homomorphism has two properties that are crucial in the applications. They are called its "functorial properties" and are given in the following theorem:

Theorem 52.4. If $h:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $k:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$ are continuous, then $(k \circ h)_{*}=k_{*} \circ h_{*}$. If $i:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ is the identity map, then i_{*} is the identity homomorphism.

Proof. The proof is a triviality. By definition,

$$
\begin{aligned}
(k \circ h)_{*}([f]) & =[(k \circ h) \circ f] \\
\left(k_{*} \circ h_{*}\right)([f]) & =k_{*}\left(h_{*}([f])\right)=k_{*}([h \circ f])=[k \circ(h \circ f)]
\end{aligned}
$$

Similarly, $i_{*}([f])=[i \circ f]=[f]$.

Corollary 52.5. If $h:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a homeomorphism of X with Y, then h_{*} is an isomorphism of $\pi_{1}\left(X, x_{0}\right)$ with $\pi_{1}\left(Y, y_{0}\right)$.

Proof. Let $k:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ be the inverse of h. Then $k_{*} \circ h_{*}=(k \circ h)_{*}=i_{*}$, where i is the identity map of $\left(X, x_{0}\right)$; and $h_{*} \circ k_{*}=(h \circ k)_{*}=j_{*}$, where j is the identity map of (Y, y_{0}). Since i_{*} and j_{*} are the identity homomorphisms of the groups $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(Y, y_{0}\right)$, respectively, k_{*} is the inverse of h_{*}.

Exercises

1. A subset A of \mathbb{R}^{n} is said to be star convex if for some point a_{0} of A, all the line segments joining a_{0} to other points of A lie in A.
(a) Find a star convex set that is not convex.
(b) Show that if A is star convex, A is simply connected.
2. Let α be a path in X from x_{0} to x_{1}; let β be a path in X from x_{1} to x_{2}. Show that if $\gamma=\alpha * \beta$, then $\hat{\gamma}=\hat{\beta} \circ \hat{\alpha}$.
3. Let x_{0} and x_{1} be points of the path-connected space X. Show that $\pi_{1}\left(X, x_{0}\right)$ is abelian if and only if for every pair α and β of paths from x_{0} to x_{1}, we have $\hat{\alpha}=\hat{\beta}$.
4. Let $A \subset X$; suppose $r: X \rightarrow A$ is a continuous map such that $r(a)=a$ for each $a \in A$. (The map r is called a retraction of X onto A.) If $a_{0} \in A$, show that

$$
r_{*}: \pi_{1}\left(X, a_{0}\right) \longrightarrow \pi_{1}\left(A, a_{0}\right)
$$

is surjective.
5. Let A be a subspace of \mathbb{R}^{n}; let $h:\left(A, a_{0}\right) \rightarrow\left(Y, y_{0}\right)$. Show that if h is extendable to a continuous map of \mathbb{R}^{n} into Y, then h_{*} is the trivial homomorphism (the homomorphism that maps everything to the identity element).
6. Show that if X is path connected, the homomorphism induced by a continuous map is independent of base point, up to isomorphisms of the groups involved. More precisely, let $h: X \rightarrow Y$ be continuous, with $h\left(x_{0}\right)=y_{0}$ and $h\left(x_{1}\right)=y_{1}$. Let α be a path in X from x_{0} to x_{1}, and let $\beta=h \circ \alpha$. Show that

$$
\hat{\beta} \circ\left(h_{x_{0}}\right)_{*}=\left(h_{x_{1}}\right)_{*} \circ \hat{\alpha}
$$

This equation expresses the fact that the following diagram of maps "commutes."

7. Let G be a topological group with operation - and identity element x_{0}. Let $\Omega\left(G, x_{0}\right)$ denote the set of all loops in G based at x_{0}. If $f, g \in \Omega\left(G, x_{0}\right)$, let us define a loop ${ }^{r} \otimes g$ by the rule

$$
(f \otimes g)(s)=f(s) \cdot g(s)
$$

(a) Show that this operation makes the set $\Omega\left(G, x_{0}\right)$ into a group.
(b) Show that this operation induces a group operation \otimes on $\pi_{1}\left(G, x_{0}\right)$.
(c) Show that the two group operations $*$ and \otimes on $\pi_{1}\left(G, x_{0}\right)$ are the same.
[Hint: Compute $\left(f * e_{x_{0}}\right) \otimes\left(e_{x_{0}} * g\right)$.]
(d) Show that $\pi_{1}\left(G, x_{0}\right)$ is abelian.

§53 Covering Spaces

We have shown that any convex subspace of \mathbb{R}^{n} has a trivial fundamental group; we turn now to the task of computing some fundamental groups that are not trivial. One of the most useful tools for this purpose is the notion of covering space, which we introduce in this section. Covering spaces are also important in the study of Riemann surfaces and complex manifolds. (See [A-S].) We shall study them in more detail in Chapter 13.

