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We have proved the bisection theorem for bounded polygonal regions in the plane.
However, all that was needed in the proof was the existence of an additive area function
for A; and A;. Thus, the theorem holds for any two sets A; and A, that are “Jordan-
measurable” in the sense used in analysis.

These theorems generalize to higher dimensions, but the proofs are considerably
more sophisticated. The generalized version of the bisection theorem states that given
n Jordan-measurable sets in R”, there exists a plane of dimension n — 1 that bisects
them all. In the case n = 3, this result goes by the pleasant name of the “ham sandwich
theorem.” If one considers a ham sandwich to consist of two pieces of bread and a slab
of ham, then the bisection theorem says that one can divide each of them precisely in
half with a single whack of a cleaver!

Exercises

1. Prove the following “theorem of meteorology”: At any given moment in time,
there exists a pair of antipodal points on the surface of the earth at which both
the temperature and the barometric pressure are equal.

2. Show that if g : §2 — S is continuous and g(x) # g(—x) for all x, then g is
surjective. [Hint: If p € §2, then $? — {p} is homeomorphic to R2.]

3. Leth : S! — S! be continuous and antipode-preserving with h(bp) = bg. Show
that h, carries a generator of ) (S ! bo) to an odd power of itself. [Hint: If k is
the map constructed in the proof of Theorem 57.1, show that k, does the same.]

4. Suppose you are given the fact that for each n, no continuous antipode-preserving
map h : $" — §”" is nulhomotopic. (This result can be proved using more
advanced techniques of algebraic topology.) Prove the following:

(a) There is no retraction r : B"+! — §".

(b) There is no continuous antipode-preserving map g : S"+! — §".

(c) (Borsuk-Ulam theorem) Given a continuous map f : $"*! — R"*+1 there
is a point x of $"*! such that f(x) = f(—x).

(d) If Ay, ..., Apq1 are bounded measurable sets in R**!, there exists an n-
plane in R"*! that bisects each of them.
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As we have seen, one way of obtaining information about the fundamental group of
a space X is to study the covering spaces of X. Another is one we discuss in this
section, which involves the notion of homotopy type. 1t provides a method for reducing
the problem of computing the fundamental group of a space to that of computing the
fundamental group of some other space—preferably, one that is more familiar.

We begin with a lemma.





