

Figure 60.2

the figure eight in T#T with the figure eight in Y. Then one retracts Y onto its figure eight by mapping each cross-sectional circle to the point where it intersects the figure eight. Then one maps the figure eight in Y back onto the figure eight in T#T by the map h^{-1} .

Corollary 60.7. The 2-sphere, torus, projective plane, and double torus are topologically distinct.

Exercises

- 1. Compute the fundamental groups of the "solid torus" $S^1 \times B^2$ and the product space $S^1 \times S^2$.
- 2. Let X be the quotient space obtained from B^2 by identifying each point x of S^1 with its antipode -x. Show that X is homeomorphic to the projective plane P^2 .
- 3. Let $p: E \to X$ be the map constructed in the proof of Lemma 60.5. Let E' be the subspace of E that is the union of the x-axis and the y-axis. Show that p|E' is not a covering map.
- **4.** The space P^1 and the covering map $p: S^1 \to P^1$ are familiar ones. What are they?
- 5. Consider the covering map indicated in Figure 60.3. Here, p wraps A_1 around A twice and wraps B_1 around B twice; p maps A_0 and B_0 homeomorphically onto A and B, respectively. Use this covering space to show that the fundamental group of the figure eight is not abelian.

Figure 60.3