2) Let X and Y be manifolds. Prove the following: a)

Let $y \in Y$, and let $f: X \longrightarrow X \times Y$ be defined by f(x) = (x, y). Then $df_x(v) = (v, 0)$.

b)

Let $f: X \longrightarrow Y$ and $g: X' \longrightarrow Y'$ be smooth maps, and define $f \times g: X \times X' \longrightarrow Y \times Y'$ by $f \times g(x, y) = (f(x), g(y))$. Show that $d(f \times g)_{(x,y)} = df_x \times dg_y$.

c)

Let $f: X \times Y \longrightarrow X$ be the projection. Then

$$df_{(x,y)} \colon T_{(x,y)}X \times Y \longrightarrow T_xX$$

is also a projection.

3)

Let X be the subset of \mathbb{R}^2 defined by the equation xy = 0. Is X a smooth submanifold of \mathbb{R}^2 ?

4)

Prove that an embedding of a manifold M in a manifold N followed by an embedding of N in a third manifold P is an embedding of Min P.

5)

Define functions from \mathbb{R} to \mathbb{R}^2 as follows: $f(t) = (t, t^3), g(t) = (t^2, t^3), h(t) = (t^3, t^5)$ and $k(t) = (\cos t, \sin t)$.

- i. Show that f is a smooth embedding of \mathbb{R} into \mathbb{R}^2 .
- ii. Show that h is a topological embedding of $\mathbb R$ into $\mathbb R^2$ but not an immersion.
- iii. Is g an immersion? An embedding?
- iv. Is k an immersion? An embedding?