
Math 423 Course Notes

David Rose

October 18, 2003

Contents

1 Smooth Manifolds 3
1.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . 3
1.2 Morphisms of Manifolds . . . . . . . . . . . . . . . . . . . . . 5
1.3 Partitions of Unity . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Tangent Vectors and Tangent Spaces 10
2.1 Tangent Vectors and Tangent Spaces . . . . . . . . . . . . . . 10
2.2 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The Tangent Bundle . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The Cotangent Bundle . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Submanifolds and Implicit Function Theorem 22
3.1 The Inverse and Implicit Function Theorems . . . . . . . . . 22
3.2 Regular Values . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Embeddings, Immersions, and Rank . . . . . . . . . . . . . . 27

4 Vector Fields and Flows 32
4.1 The Correspondence between Flows and Vector Fields . . . . 32
4.2 Lie Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 F -related Vector Fields . . . . . . . . . . . . . . . . . . . . . 42

5 Vector Bundles 45
5.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Vector Bundles via Transition Maps . . . . . . . . . . . . . . 48
5.3 The Cotangent Bundle as a Vector Bundle . . . . . . . . . . . 51

1



6 Differential Forms 53
6.1 The Exterior Derivative . . . . . . . . . . . . . . . . . . . . . 53
6.2 Pull-backs of Differential Forms . . . . . . . . . . . . . . . . . 56
6.3 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Lie Derivatives of Forms . . . . . . . . . . . . . . . . . . . . . 59
6.5 de Rham Cohomology . . . . . . . . . . . . . . . . . . . . . . 63

7 Integration of Differential Forms 68
7.1 Integration of Differential Forms . . . . . . . . . . . . . . . . 68
7.2 Stokes’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Riemannian Geometry 79
8.1 Connections on Vector Bundles . . . . . . . . . . . . . . . . . 79
8.2 Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3 Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.5 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 Some Hamiltonian Mechanics 98
9.1 Calculus of Variations on Manifolds . . . . . . . . . . . . . . 98
9.2 Some Symplectic Geometry . . . . . . . . . . . . . . . . . . . 106

Appendix A: Multilinear Algebra 112

Appendix B: Professor Lerman’s Words of Wisdom 122

2



1 Smooth Manifolds

1.1 Definitions and Examples

Before we give the definition of a manifold, we need a couple of preliminary
definitions.

Definition 1.1. Chart
Let X be a topological space. An Rn chart on X is a map φ : U → U ′

where
1) U ⊂ X is open;
2) U ′ ⊂ Rn is open, and
3) φ is a homeomorphism.

Definition 1.2. Atlas
A C∞ atlas in a topological space is a collection of charts {φα : Uα → U ′α}
such that
1) {Uα} is an open cover of X, and
2) If Uα ∩ Uβ 6= ∅, then φβ ◦ φ−1

α (Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is C∞.

This last requirement says that change of coordinates should be smooth.
In addition, we have the notion of equivalence: We say that two atlases are
equivalent if their union is also an atlas. One can easily verify that this is
indeed an equivalence relation.
Now, armed with these definitions, we are ready to define the notion of a
smooth (C∞) manifold.

Definition 1.3. Manifold
An n-dimensional (C∞) manifold is a second countable Hausdorff topo-
logical space together with an equivalence class of C∞ atlases into Rn.

A few comments on this definition, which may be hard to digest at first:
Foremost, manifold is a space that is “locally Euclidean” whose change
of coordinates is smooth. It is important that change of coordinates are
smooth, for, roughly speaking, if we want to do generalized calculus on
manifolds, we will want to ensure that the calculus we do on one coordinate
chart agrees with the calculus we do on any overlapping coordinate charts.
Finally, Hausdorff and second countable ensure that the topology on our
manifold is “nice” (for example, in a non-Hausdorff space, sequences can
converge to two different limits!), and, as we will see later on, allows us to
assert the existence of global objects when we can define them only locally.
This will all be made more precise later on.
Now, let’s look at some examples of manifolds.
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Example 1.4.
Let X = R, U ′ = X = U , and φ(x) = x. This is the standard manifold
structure on R.

Example 1.5.
Cn is a manifold for all n.

Example 1.6.
If M is a manifold, and V ⊂M is open, then V is a manifold.

Example 1.7.
Note that Mn(R) is a manifold, for it can be identified with Rn2

. Further-
more, the determinant map from Mn(R) to R is continuous, since it is a poly-
nomial mapping from Rn2

to R. Since GL(n,R) = f−1[(−∞, 0) ∪ (0,∞)],
it is an open set of Mn(R). So by the previous example, GL(n,R) is a
manifold.

Example 1.8.
Let X = S2, the two-sphere. Let’s give X the subspace topology that it
inherits as a subset of R3. First, we need to define charts. To do this, let
U+
i = {x ∈ S2 : xi > 0} and U−i = {x ∈ S2 : xi < 0}, which gives us

an open cover of X, and define φ±1 (x) = (x2, x3), φ±2 (x) = (x1, x3), and
φ±3 (x) = (x1, x2).
Next, we need to verify that change of coordinates is smooth. Consider,
for example, φ+

2 ◦φ
+
1
−1(u1, u2) = (

√
1− u2

1 − u2
2, u2), which is smooth in its

region of definition. The other compositions yield similar results, so that it
follows that X is indeed a manifold.

Example 1.9.
Now we consider a more non-trivial example of a manifold, real projec-
tive space. Specifically, let RPn−1 denote equivalence classes of lines in Rn

through the origin, where two lines v and v′ are equivalent if and only if
there is a constant λ 6= 0 such that v = λv′. Note that this is an equivalence
relation.
The topology here is the quotient topology induced by the map π : Rn −
{0} → RPn−1 defined by (v) 7→ [v]. That is, U ⊂ RPn−1 is open if and only
if π−1(U) is open in Rn − {0}.
Charts here are given as follows:

Ui = {[x1, ..., xn] ∈ RPn−1 : xi 6= 0}

φi : Ui → Rn−1 is defined by [x1, ..., xn] 7→
(
x1

xi
, · · · , xn

xi

)
4



φ−1
i : (x1, · · · , xn−1) 7→ [x1, · · · , xi−1, 1, · · · , xn].

Now we must check that the change of coordinates maps are smooth. If
j < i, then

φj◦φ−1
i (u1, · · · , un−1) = φj(u1, · · · , ui−1, 1, · · · , un) =

(
u1

uj
, · · · , ui−1

uj
,

1
uj
, · · · , un

uj

)
,

which is smooth. Other computations are similar, of course.

Exercise 1.1.
Define complex projective space similarly to real projective space, and prove
that it is a manifold.

Exercise 1.2.
If M and N are manifolds, then so is M ×N .

Exercise 1.3.
Let V be a finite-dimensional vector space over R. Prove that V is a mani-
fold.

1.2 Morphisms of Manifolds

We now study structure-preserving maps of manifolds.

Definition 1.10. Smooth Map
Let M and N be manifolds with atlases {(Uα, φα)} and {(Vβ, ψβ)}, respec-
tively. A continuous map f : M → N is a smooth map (or a morphism of
C∞ manifolds) if for all α and β with

f−1(Vβ) ∩ Uα 6= ∅,

we have that the composition

ψβ ◦ f ◦ φ−1
α : φα(Uα ∩ f−1(Vβ)) → ψβ(Vβ)

is C∞.

Often we will write C∞ to denote smooth. What this definition says is
essentially this : Take a map, and write it out in coordinates. If it smooth
in coordinates, then it is smooth. Note also that this definition will not
depend on which atlas we choose. Also note a special case of this definition:
f : M → R is smooth if f is continuous and if for all coordinate charts
{(Uα, φα)}, f ◦ φα : Uα → R is C∞.
Given a manifold M , the collection of smooth functions f : M → R will be
of special importance to us, and we will denote this set as C∞(M).
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Definition 1.11. C∞(M)
C∞(M) denotes the collection of smooth functions from M to R.

Now, let’s look at some examples of smooth maps.

Example 1.12. Take M = Rn − {0}, and let N = RPn−1. Let π(v) = [v],
the quotient map that induces the topology on RPn−1. The charts on RPn−1

are the same as last time. Now, note that π−1(Ui) = {v ∈ Rn−{0} : vi 6= 0}.
To see that π is smooth, we need to check that φi ◦π◦φ−1 : π−1(Ui) → Rn−1

is C∞. But note that

(φi ◦ π ◦ φ−1)(v) = φi(π(v)) = φi([v]) =
(
v1
vi
, · · · , vn

vi

)
.

Example 1.13. LetM = R = N and U = R = V , φ(x) = x, and ψ(x) = x3.
Let f : M → N be the map x 7→ x3. Is this a C∞ map?

(ψ ◦ f ◦ φ−1)(x) = ψ ◦ f(x1/3) = ψ(x) = x,

which is smooth. So f is smooth.
Now let us see if the map h(x) = x is smooth. The answer to this question
will be no, because ψ ◦ h ◦ φ(x) = x1/3, which is not differentiable at 0.

Example 1.14. Constant functions are smooth maps of manifolds

The appropriate notion of “isomorphism” in differential geometry is the
following one:

Definition 1.15. Diffeomorphism
A C∞ map f : M → N is a diffeomorphism if f is a homeomorphism and
both f and f−1 are C∞ maps.

Exercise 1.4.
If M and N are manifolds, prove that M ×N is diffeomorphic to N ×M .

Exercise 1.5.
Show that the composition of smooth maps is smooth.

Exercise 1.6.
Let LA : GL(n,R) → GL(n,R) be left multiplication by A ∈ GL(n,R).
Prove that LA is a diffeomorphism.
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Exercise 1.7.
Let M be a connected manifold, and let p, q ∈M be any two points. Then
there is a diffeomorphism of M taking p to q.
Hint: Do the case where p and q lie in the same coordinate chart first, and
then utilize the fact that connected manifolds have to be path connected
(why?)

At this point, we pose the following question. Given a manifold M , must
there exist non-constant C∞ functions on it? The answer is (perhaps some-
what surprisingly) yes, and the reason is the existence of so-called bump
functions. We will investigate this question a bit and state a couple of
statements without proof, mainly because the proofs of these statements are
unenlightening digressions into point-set topological obscurity and should
be omitted in favor of seeing some more interesting and enlightening results
later on.

Definition 1.16.
If f : X → R is continuous, then supp(f), the support of f , is defined to be
the set {x ∈ Rn : f(x) 6= 0}.

Theorem 1.17.
If K ⊂ Rn is compact and U ⊂ Rn is open with K ⊂ U , then there is a
smooth function on Rn such that:
1) f

∣∣∣
k
≡ 1.

2) 0 ≤ f(x) ≤ 1,∀x.
3) supp(f)⊂ U .

Proof. See Conlon, Theorem 2.6.1.

1.3 Partitions of Unity

Definition 1.18. Partition of Unity
Let {Uα} be an open cover of a manifold M . A partition of unity sub-
ordinate to {Uα} is a collection of C∞ functions {ρα : M → [0, 1]} such
that :
1) supp(ρα) ⊂ Uα for all α.
2) ∀m ∈M , there is a neighborhood Wm of m such that ρα

∣∣∣
Wm

6= 0 for only

finitely many α.
3)
∑

α ρα ≡ 1.
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Partitions of unity are important for the following reason: Throughout
the semester, it will be necessary to prove global existence statements about
objects which we can define only in coordinate charts (i.e., locally). Loosely
speaking, partitions of unity are the primary machinery for combining these
individual objects defined on coordinate charts into global objects. Now,for
those a bit rusty on point-set topology, “recall” that a covering of a set W
is locally finite if for each x ∈W , there are only finite members of the cover
that intersect x. Using this definition, we can then define paracompactness,
which is the following generalization of compactness : Let X be a topologi-
cal space. A set W ⊂ X is said to be paracompact provided that every open
cover of W has a local finite open refinement that covers W .

The significance of paracompactness for us is the following:

Theorem 1.19.
Every C∞ manifold is paracompact.

Proof. Conlon, Corollary 1.4.6.

This proof is one stage where it is crucial that manifolds are second-
countable and Hausdorff.

Theorem 1.20.
If M is a paracompact manifold then any open cover has a partition of unity
subordinate to it.

Proof. Conlon, Theorem 3.5.4.

Thus, we will always have a partition of unity when we need it, so we
will assume their existence whenever necessary. Before moving on, we give a
relatively simple application of these ideas. More sophisticated applications
will appear later in the course.

Proposition 1.21.
Suppose that M is a manifold, and that K ⊂ M is closed. Suppose that
U ⊂ M is open with K ⊂ U . Then there is a function f ∈ C∞(M) such
that :
1) 0 ≤ f ≤ 1.
2) f

∣∣∣
K
≡ 1.

3) supp(f) ⊂ U .
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Proof. Consider the cover {U,M −K}. Let ρU , ρV be partitions of unity on
U and V = M −K, respectively. Then supp(ρU ) ⊂ U , and since ρV

∣∣∣
K
≡ 0,

we have that ρU
∣∣∣
K
≡ 1.
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2 Tangent Vectors and Tangent Spaces

2.1 Tangent Vectors and Tangent Spaces

An idea behind tangent vectors and tangent spaces is that we want to gener-
alize the idea of tangent vectors to surfaces in Rn. Since we have no notion
of “tangency” for arbitrary manifolds (which may or may not sit inside Eu-
clidean space), this may seem very difficult to do. We need a generalized
notion of tangent vectors, and Rn does indeed provide us with a suitable,
very general notion of tangency.
Namely, given a point in Rn, there is a 1 − 1 correspondence between vec-
tors in Rn and directional derivatives which act on functions f : Rn → R
that are smooth in some neighborhood of that point. To outline this cor-
respondence, we illustrate it in R2 and then generalize directly from there.
Accordingly, fix a ∈ R2. With a vector v ∈ Rn, we associate Dv

∣∣∣
a
, the

directional derivative of a, by

(Dv

∣∣∣
a
)(f) =

d

dt

∣∣∣
t=0

f(a+ tv),

or equivalently, we have the correspondence

v = (v1, v2) 7→ ∇ · v = (v1
∂

∂x

∣∣∣
a
, v2

∂

∂y

∣∣∣
a
).

Thus, if f ∈ C∞(R2),

(∇ · v)(f) =
(
v1
∂f

∂x
(a), v2

∂f

∂y
(a)
)
.

Hence, if a is a point and v is a vector, we can define a differential opera-
tor corresponding to v acting on functions f : R2 → R which are smooth
in a neighborhood of a. Furthermore, this space of differential operators
is a vector space, and it is called the tangent space at a. This specific
correspondence in Rn forms the foundation for our general notions of tan-
gency because, as the reader will see, we can construct an analogous space
of differential operators for arbitrary points on arbitrary manifolds. Indeed,
as with R2, the tangent space for general manifolds allows us to associate
a linear space of differential operators with each point on a manifold. One
advantage of this idea is that we can subsequently describe manifolds and
smooth maps using the more familiar language of linear algebra.
To construct the tangent space, we first need to define, in a general fashion,
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what we mean by tangent vector. First, observe that the directional deriva-
tive in Rn has the following desirable properties:
(1) Let ej be the jth coordinate vector. Then Dej

∣∣∣
a

= ∂
∂xj

.

(2)Dv

∣∣∣
a

is R-linear.

(3)Dv

∣∣∣
a

obeys Leibniz’s Rule : Dv

∣∣∣
a
(fg) = f(a)Dv

∣∣∣
a
(g) + g(a)Dv

∣∣∣
a
(f).

Property (3) is also known as the product rule, of course. Also, any operator
satisfying the above three properties is called a derivation.
Next, to define a tangent vector at a point a in a manifold M , we merely
define it as any operator on C∞(M) satisfying properties (1)-(3) above.

Definition 2.1. Tangent Vector
Let M be a manifold with a ∈ M . A tangent vector to M at a is a map
v : C∞(M) → R such that :
(1) v is R-linear, and
(2) v(fg) = f(a)v(g) + g(a)v(f).

We would like to show the following things :
(1) Tangent vectors always exist;
(2) Tangent vectors form an R-vector space (denoted by TaM) whose di-
mension is the same as the dimension of M , and
(3) The coordinate charts define a basis for TaM .
We will do this in several steps. The first two propositions are relatively
simple, so we’ll do them first. The third property will require some more
machinery, however.

Proposition 2.2.
Tangent vectors always exist.

Proof. Let M be a manifold and a ∈M . Suppose that (U, φ) is a coordinate
chart with a ∈ U . Define

∂

∂xi
(f)
∣∣∣
a

=
∂

∂ri

∣∣∣
φ(a)

(f ◦ φ−1),

where f ∈ C∞(M). Then ∂
∂xi

∣∣∣
a

is a tangent vector at a.

The only thing we did in the previous proposition is define the notion of a
partial derivative on a manifold in terms of the derivative of a function from
Rn → R, and because we know how such derivatives act, it is clear from our
definition of tangent vectors that we actually have defined a tangent vector.
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Proposition 2.3.
Let M be a manifold, with a ∈M . Then TaM is an R-vector space.

Proof. If v and w are two tangent vectors and λ, µ are two real numbers,
define (λv + µw)(f) = λv(f) + µw(f). By definition, this makes TaM into
a vector space.

Definition 2.4. Tangent Space
Let M be a manifold, and let a ∈ M . Then TaM is called the tangent
space to M at a.

Note that the above definition makes sense since we know that our or-
dinary differential operators on R are R-linear. Now we state the main
theorem of the section, which we will prove via a couple of lemmas.

Theorem 2.5.
Suppose that (U, φ = (x1, · · · , xn)) is a coordinate chart on M . Then { ∂

∂xj
}

forms a basis for TaM , and for any v ∈ TaM ,

v =
∑
i

v(xi)
∂

∂xi
.

That is, the coordinate charts help us define a basis for TaM , and a
tangent vector is completely determined by its action on the coordinate
functions. In order for this to make sense, first we need show that our
definition of tangent vectors is local, in the sense that we can locally identify
TaU with TaM if (U, φ) is a coordinate chart on M . This is of particular
importance since global charts may not always be defined, while local charts
are always defined.

Lemma 2.6.
Suppose that v ∈ TaM . Then
(1) If f, g ∈ C∞(M) are such that f = g in a neighborhood U of a, then
v(f) = v(g).
(2) If h is constant on a neighborhood U of a, then v(h) = 0.

Proof. (1) Suppose that f
∣∣∣
U

= g
∣∣∣
U
. As v is R-linear, it is enough to show

that v(f − g) = 0. Pick ρ ∈ C∞(M) with 0 ≤ ρ ≤ 1, ρ ≡ 1 ”near” a, and
supp(ρ) ⊂ U . Now, we have that ρ(f − g) = 0 on all of M by construction.
Furthermore, because v is linear, v(0) = 0, so that

0 = v(ρ(f − g)) = v(ρ)(f − g)(a) + ρ(a)v(f − g) = v(f − g).
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(2) Let 1 denote the constant function 1. By linearity, we have v(1 · 1) =
2v(1), so that v(1) = 0. Now, for any constant function c, v(c) = c ·v(1) = 0.
By part (1), we are done.

Lemma 2.7.
Let M be a manifold, U ⊂ M be an open set, and a ∈ U . Then the map
TaU → TaM given by v 7→ (f 7→ v(f

∣∣∣U)) is an isomorphism.

Proof. By the previous lemma, the map is well-defined, and it is linear by
definition of tangent vectors. To see that it is an isomorphism, pick a bump
function ρ ∈ C∞(U) whose support is in U and which is identically 1 ”near”
a. Then the map from TaM → TaU given by v 7→ (f 7→ v(ρf)) is an
inverse.

Lemma 2.8.
Suppose that h ∈ C∞(BR(0)). Then h(r) = h(0)+

∑
rihi(r), where hi(0) =

∂h
∂ri

(0).

Proof.

h(r)− h(0) =
∫ 1

0
(
d

dt
h(tr))dt =

∫ 1

0
(
∑

ri
∂h

∂ri
(tr))dt =

∑
ri

∫ 1

0

∂h

∂ri
(tr)dt.

Now we are in a position to prove that the coordinate differentials form
a basis for TaM .

Proof. We want to show that if (U, φ = (x1, · · · , xn)) is a coordinate chart
on M , then ∂

∂xi

∣∣∣
a

= ∂
∂ri

∣∣∣
φ(a)

(f ◦ φ−1) form a basis of TaM . Note that

∂
∂xi

∣∣∣
a
(xj) = ∂

∂ri

∣∣∣
φ(a)

(rj ◦ φ−1). But xj = rj ◦ φ, so this expression reduces to

∂
∂ri

(xj)
∣∣∣
a

= δij . This then implies that the ∂
∂xj

’s are linearly independent.

Now, we argue that for all v ∈ TaU and all f ∈ C∞(U),

v(f) =
∑

v(xi)
∂

∂xi

∣∣∣
a
(f).

WLOG, we may assume that φ(a) = 0 in Rn (we always may translate our
charts back to the origin). Furthermore, assume WLOG that φ[U ] = BR(0).
Then we have

(f ◦ φ−1)(r) = (f ◦ φ−1)(0) +
∑

rihi(r),

13



by the previous lemma, where hi(0) = ∂
∂ri

(f ◦ φ−1)
∣∣∣
0
. Thus,

f(x) = f(a) +
∑

xi · fi(x),

where
fi(a) =

∂

∂ri
(f ◦ φ−1)(0) =

∂

∂xi

∣∣∣
a
(f),

for all x ∈ U . Hence, for any v ∈ TaM , we have

v(f) = v(f(a) +
∑

xifi)

=
∑

xi(a)v(fi)
∑

v(xi)fi(a)

=
∑

v(xi)fi(a)

=
∑

v(xi)
∂

∂xi

∣∣∣
a
(f).

Note the following special case of this theorem: Namely, if (U,ψ =
(y1, · · · , yn)) is another coordinate chart, then

∂

∂yj

∣∣∣
a

=
∑ ∂

∂yj

∣∣∣
a
(xi) ·

∂

∂xi

∣∣∣
a
.

This is the change of coordinates formula, where

∂

∂yj

∣∣∣
a
(xi) =

∂

∂ri
(xi ◦ ψ−1) =

∂

∂ri
(rj ◦ (φ ◦ ψ−1)),

the Jacobian of φ ◦ψ−1. So if we have two coordinate charts on U , then the
change of coordinates formula is given by the Jacobian of the composition.
As a notational convention, { ∂

∂ri
}i is a basis of TaRn for all a. We iden-

tify Rn with TaRn, since there is a natural isomorphism between the two
spaces. Also, from now on, we will use {ri} to denote the standard (global)
coordinates on Rn.

2.2 Differentials

With each point on a manifold, we have associated a linear space whose
dimension as a vector space over R is equal to the dimension of the manifold.
But what can we say about mappings between these linear spaces? As it
turns out, every smooth map of manifolds will induce linear maps between
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tangent spaces. Furthermore, in the familiar case of mappings from Rn to
Rm, this induced linear map will turn out to be the derivative; i.e., the
m× n matrix of first partial derivatives evaluated at the appropriate point.
We now give the necessary definitions.

Definition 2.9. Differential
Suppose that F : M → N is C∞. Then for all a ∈ M and all f ∈ C∞(M),
we define the differential of F

dF : TaM → TF (a)N

by
(dFa(v))(f) = v(f ◦ F ).

Note that since tangent vectors are R-linear, the differential map is also
R-linear. Thus, the differential map is a homomorphism of vector spaces, or
a linear transformation. Furthermore, since a tangent vector is completely
determined by its action on coordinate functions (which we proved in the
last section), we can compute differentials of mappings, which we will do
in a couple of examples below. First, however, we will consider two special
cases of the differential map; namely, when M = R and when N = R.
Case (1): N = R.
In this case, dFa : TaM → TF (a)R, which we identify with R; that is,
dFa ∈ TaM∗, the dual space of TaM . More precisely,

(dFa(v))(r) = v(r ◦ F ) = v(F );

that is, dFa(v) = v(F ). Note that v =
∑
v(xi) ∂

∂xi
=
∑
dxi(v) ∂

∂xi
, which

says that {dxi} forms a basis for the dual space TaM∗.
Case (2): M = R.
In this case, F : R → N is a curve. Then (dF )t( ddr ) = F ′(t), the tangent
vector to a curve at F (t).
Fortunately, differentials obey a nice composition rule: the familiar chain
rule from calculus.

Theorem 2.10. Chain Rule
If F : X → Y and H : Y → Z are smooth maps of manifolds, then

d(H ◦ F )a = dHF (a) ◦ dFa.

Proof. Fix a ∈ X, v ∈ TaX, and f ∈ C∞(Z). Then

(d(H ◦ F )a(v))(f) = v(f ◦ (H ◦ F ))
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= v((f ◦H) ◦ F )
= (dFa(v))(f ◦H)
= (dHF (a)(dFa(v)))(f).

Example 2.11.
Suppose that f : Rm → Rn is smooth. We have defined dfx : TxM → Tf(x)N ;
it is natural to ask how this relates to the derivative map Dfx : Rm → Rn,
which is the matrix of partials evaluated at the point x ∈ Rm. We guess
that these maps are the same (after we identify TxRm with Rm and Tf(x)Rn

with Rn). To see this, we’ll simply compute

dfx(
∂

∂rj
)
∣∣∣
x
.

Writing a vector w ∈ TxRm out in coordinates, we have

w =
∑

w(si)
∂

∂si

∣∣∣
x
.

Then

(dfx(
∂

∂rj

∣∣∣
x
))(si) =

∂

∂rj

∣∣∣
x
(si ◦ f)

=
∂

∂rj

∣∣∣
x
(fi)

=
∂fi
∂rj

(x)

= Dfx(ej).

In other words, the differential at a point is the Jacobian matrix of first
partial derivatives evaluated at that point.

Exercise 2.1.
If M and N are manifolds, then Tm,n(M×N) = TmM×TnN for all m ∈M
and n ∈ N .

Exercise 2.2.
If φ : M → N is a diffeomorphism, then

dφa : TaM → Tφ(a)N

is an isomorphism.
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Exercise 2.3.
Suppose that γ : R → Rn. Show that

dγ(
d

dt
) =

∑
i

γi
′(t)

∂

∂ri
.

Exercise 2.4.
For any tangent vector v ∈ TmM , there is a curve γ : (a, b) → M with
γ(0) = m and dγ0( ddt) = v.

2.3 The Tangent Bundle

Definition 2.12. Tangent Bundle
The tangent bundle TM to a manifold M is

TM =
⋃
a∈M

TaM.

We want to show that TM itself is a manifold. Strictly speaking, we first
should specify a topology on TM , but let us find candidates for charts on
TM instead. To do this, begin with a coordinate chart (U, φ = (x1, · · · , xn))
on M . Let U∗ = TU . Note that there is a map π : TM → M that sends
v ∈ TaM to a, which is called the bundle projection. Define

φ∗ = (x1 ◦ π, · · · , xn ◦ π, dx1, · · · , dxn).

Now, if {(Uα, φα)} is an atlas on M , we claim that {(U∗α, φ∗α)} is an atlas on
TM .
To see why this claim is true, let (U, φ = (x1, · · · , xn)) and (V, ψ = (y1, · · · , yn))
be two coordinate charts on M with U ∩V 6= ∅. Then T (U ∩V ) = TU ∩TV ,
and φ∗ = (x1, · · · , xn, v1, · · · , vn). Also, ψ∗ = (y1, · · · , yn, w1, · · · , wn) are
candidates for charts on U∗ and V ∗. Now let us compute
(ψ∗ ◦ φ∗−1)(r1, · · · , rn, u1, · · · , un), to see whether or not change of coordi-
nates is smooth. First, note that

φ∗−1(r1, · · · , rn, u1, · · · , un) =
∑

ui
∂

∂xi

∣∣∣
φ−1(r1,···,rn)

∈ Tφ−1(r1,···,rn)M.

So

ψ∗(
∑

ui
∂

∂xi

∣∣∣
φ−1(r1,···,rn)

) = ψ(φ−1(r1, · · · , rn), dy1(
∑

ui
∂

∂xi
), · · · , dyn(

∑
ui

∂

∂xi
)).
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But
dyj(

∑
ui

∂

∂xi
) =

∑
ui(

∂

∂xi
(yj)) =

∂

∂rj
(rj(ψ ◦ φ−1)),

a piece of the Jacobian. Thus, under this composition map, we have that
(r1, · · · , rn, u1, · · · , un) 7→ ((ψ ◦ φ−1(r1, · · · , rn)), (

∑
iAijui)j), where Aij =

∂
∂rj

(rj ◦ (ψ ◦ φ−1)). If we induce the topology of φ∗ : TU → φ(U) × Rn

so that φ is a homeomorphism, we then have that our functions φ∗ are
homeomorphisms, and we have just shown that change of coordinates is
smooth. Thus, to finish the proof, we need the following result, which we
should prove, but won’t:

Proposition 2.13. If M is Hausdorff and second countable, so is TM .

Thus, it follows that TM is a manifold, and in fact, we have shown that
if M is n-dimensional, TM is a 2n-dimensional manifold. As a matter of
notation, we write (m, v) ∈ TM for v ∈ Tm(M).

Exercise 2.5.
Prove that the map π : TM → M is smooth and that the differential
dπv : Tv(TM) → Tπ(v)M is surjective.

2.4 The Cotangent Bundle

By analogy with the tangent bundle, we can define the cotangent bundle
as

T ∗M =
∐
a∈M

T ∗aM.

Recall from earlier that if (U, φ = (x1, . . . , xn)) is a coordinate chart on M ,
then for a ∈ U , {dx1, . . . , dxn} forms a basis for T ∗aM , the cotangent space
of M at a. One can think of T ∗aM as the dual space of the vector space
TaM . Once again, we write (a, v) for the element v ∈ T ∗aM . We now have
the following theorem:

Theorem 2.14.
If M is an n-dimensional manifold, then T ∗M is a 2n-dimensional manifold.
In fact, if (U, φ = (x1, . . . , xn)) is a coordinate chart on M , then

(U × Rn, φ∗ = (x1, . . . , xn,
∂

∂x1
, . . . ,

∂

∂xn
))

defines a coordinate chart on T ∗M . Moreover, the projection map π :
T ∗M →M given by π(a, v) = a is smooth.

18



Proof. Since we have defined charts, we need only check that change of coor-
dinates is smooth, and this computation is quite similar to the change of co-
ordinates computation we did on the tangent bundle. Namely, if {x1, . . . , xn}
and {y1, . . . , yn} are two local coordinate systems on M , then the change of
coordinates map ψ : U × Rn → U × Rn is given by

(q, (η1, . . . , ηn)) 7→ (q, . . . ,
∑
j

ηjdxj(
∂

∂yi
), . . .).

Remark 2.15.
Suppose f : M → R is smooth. Then at each point x ∈M , dfx is an element
of the dual of TxM ; that is, we may view df as a map from M → T ∗M .
This point of view will be important when we study differential forms later
on in the semester.

Exercise 2.6.
Suppose that f : M → N is a diffeomorphism. Show that f lifts to a
diffeomorphism f̃ : T ∗M → T ∗N .
Hint: For every point x ∈ M , we have dfx : TxM → Tf(x)N . Since f
is a diffeomorphism, we get (dfx)−1 : Tf(x)N → TxM , and by taking the
transpose, we get (df−1

x )T : T ∗xM → T ∗f(x)N. Define

f̃(x, η) = (f(x), (df−1
x )T η),

where x = π(η).

2.5 Vector Fields

Now we define the notion of a vector field on a manifold.

Definition 2.16. Vector Field
A vector fieldX in a manifold M is a C∞ map

X : M → TM

such that
(π ◦X)(a) = a ∀a ∈M.

Equivalently, we have that X(a) ∈ TaM ∀a ∈M .
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In other words, we define a vector field to be a section of the tangent
bundle. The following proposition gives us an alternate characterization of
vector fields:

Proposition 2.17.
The following notion of a vector field is equivalent to the one above: A vector
field X on a manifold M is a map X : C∞(M) → C∞(M) such that

X(fg) = fX(g) + gX(f) ∀f, g ∈ C∞(M).

Exercise 2.7.
Prove the previous proposition.

As a matter of notation, vector fields on a manifold M are usually rep-
resented by χ(M) or Γ(TM). Note that Γ(TM) is both an R-vector space
and a C∞(M)-module.
Now, it is not the case that X(Y ) defines a vector field, but it may be a
surprising fact that the “multiplication” defined by [X,Y ] = X(Y )− Y (X)
does define a vector field. This multiplication of vector fields is called the
Lie bracket of X and Y. Its properties are summed up in the following
proposition.

Definition 2.18.
A Lie algebra is a real vector space V together with a multiplication [·, ·] :
V × V → V called the bracket which satisfies the following properties for
all X,Y, Z ∈ V :
(1) The bracket is bilinear over R;
(2) [X,Y ] = −[Y,X];
(3) Jacobi Identity: [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]].

Proposition 2.19.
Γ(TM) equipped with [·, ·] is a Lie algebra.

Proof. Let X,Y, Z ∈ Γ(TM). Using the previous proposition (i.e., the sec-
ond characterization of vector fields) it is not hard to check that [X,Y ] is a
vector field. In addition, bilinearity and skew-commutativity are immediate
properties, so we’ll verify the Jacobi identity. Let f ∈ C∞(M); then

[X, [Y, Z]](f) = X([Y, Z](f))− [Y, Z](X(f))
= X(Y (Z(f)))−X(Z(Y (f)))− Y (Z(X(f))) + Z(Y (X(f))).

Permuting cyclically and adding establishes the identity.
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Exercise 2.8.
Let X and Y be vector fields on M . Then [X,Y ] is also a vector field on M .

Exercise 2.9.
Compute

[x
∂

∂x
+ y

∂

∂y
, x

∂

∂x
− y

∂

∂y
],

the Lie bracket of two vector fields on R2.
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3 Submanifolds and Implicit Function Theorem

3.1 The Inverse and Implicit Function Theorems

Before defining the notion of a submanifold, we take time to state two the-
orems which are of fundamental importance in differential geometry. The
first of these is the inverse function theorem, which provides a “local con-
verse” to the earlier exercise that the differential of a diffeomorphism is an
isomorphism.

Theorem 3.1. Inverse Function Theorem
Suppose that F : V → W is smooth, where V and W are Banach spaces,
and suppose that dFx0 is an isomorphism. Then there is a neighborhood U
of x0 such that F

∣∣∣
U

: U → F (U) is a diffeomorphism.

Immediately, we then have the following corollary:

Corollary 3.1.1.
Suppose that M and N are manifolds and that f : M → N is smooth. If
dfx : TxM → Tf(x)N is an isomorphism, then there is some neighborhood U
of x such that f : U → f [U ] is a diffeomorphism.

Proof. Let (U, φ) be a coordinate chart on M with x ∈ U and (ψ, V ) be a
coordinate chart on N such that f(x) ∈ V . WLOG, we may assume that
φ[U ] = Rm, ψ[V ] = Rn, φ(x) = 0, ψ(f(x)) = 0. Then the following diagram
commutes:

U
f //

φ
��

V

ψ
��

Rm
ψ◦f◦φ−1

// Rn

Since dfx is an isomorphism, so is d(ψ ◦ f ◦ φ−1)φ(x); apply the previous
theorem to invert this map in some small neighborhood of 0 ∈ Rn. Defining
f−1 on some neighborhood of f(x) is now easy to do.

Usually, the inverse function theorem is proved using contraction map-
pings on metric spaces. If you’re curious, there’s a proof in Rudin’s under-
graduate analysis book.
We now state a version of the implicit function theorem, which can be proved
as a consequence of the inverse function theorem.
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Theorem 3.2. Implicit Function Theorem
Let p = (p1, . . . , pn) ∈ Rn. Given f1, . . . , fk ∈ C∞(p) with

det(
∂fi
∂xj

(p))1≤i,j≤k 6= 0,

there exist functions y1, . . . , yk ∈ C∞((pk+1, . . . , pn)) such that in a neigh-
borhood of p in Rn,

fj(x1, . . . , xn) = 0, ∀j

if and only if
xj = yj(xk+1, . . . , xn), 1 ≤ j ≤ k.

Now for the definition of a submanifold.

Definition 3.3. Submanifold
Let M be an m-dimensional manifold. A subset N ⊂M is an n-dimensional
submanifold if for every point x ∈ N , there is a coordinate chart (U, φ =
(x1, · · · , xm)) with x ∈ U such that

φ(U ∩N) = (φ(U)) ∩ (Rn × 0).

That is, for all a ∈ N , φ(a) = (x1(a), · · · , xn(a), 0, · · · , 0). Such charts are
said to be adapted to N.

One of the main features of this definition is that any submanifold is
itself a manifold in the subspace topology. That is, if N is a submanifold
of M , then the topologies of N and M are compatible in the sense that N
inherits its topology as a subspace of M . Recall that the subspace topology
of M in N is defined as follows: a subset U ⊂ N is open in the subspace
topology if and only if U = O ∩N for some open subset of M .
There are more general definitions of submanifolds, and for this reason, our
notion of a submanifold is sometimes called a regular submanifold. Since
a submanifold behaves somewhat like a projection of a larger space onto a
smaller space locally, the following proposition should not be surprising.

Proposition 3.4.
Let N be a submanifold of a manifold M , and let ι : N →M be the inclusion.
Then ι is smooth, and its differential is injective.

Proof. Let φ denote an adapted coordinate chart on N and let ψ denote a
local coordinate chart on M . Then ψ ◦ i ◦ φ−1 : Rm → Rn is given by

(x1, x2, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),
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certainly a smooth map.
To see injectivity, note that if {x1, . . . , xn} are local coordinates on M and
{x1, . . . , xm} are corresponding adapted coordinates in some neighborhood
of x ∈ N , then

dix(
∂

∂xi
) =

∂

∂xi
.

Example 3.5.
Let f : Rn → R be a smooth map. Then the graph of f , Γ is a submanifold
of Rn+1. To see this, we need to produce a map φ from some open set U in
Rn+1 to Rn+1 which sends U ∩ Γ to Rn × 0. Take φ(x, y) = (x, y − f(x)); it
works!

3.2 Regular Values

One way by which we can prove that certain subsets of manifolds are them-
selves submanifolds is through the notion of a regular value. We now give
the definition and prove the main theorem involving regular values.

Definition 3.6. Regular Value
Suppose f : M → N is smooth. Then y0 ∈ N is a regular value of f if for
all x ∈ f−1(y0), dfx : TxM → Ty0N is surjective.

Remark 3.7. Note that if f−1(y0) = ∅, it is a regular value of f .

The above remark may seem silly, but it is important for the following
reason:

Theorem 3.8. Sard’s Theorem
Let f : M → N be a smooth map. Then the set of regular values of f is
dense in M (and in fact has measure 0).

We will not prove the above theorem but instead focus on the geometric
properties of regular values. Here is the most important of these for our
purposes.

Theorem 3.9.
If y0 is a regular value of f : M → N , then f−1(y0) is a submanifold of M
of dimension dim(M)− dim(N).
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Proof. Let Z = f−1(y0). Pick m ∈ Z, and let (U, φ = (x1, . . . , xm)) be a
coordinate chart on M with m ∈ U . Without loss of generality, we may as-
sume that φ(m) = 0. Furthermore, let (V, ψ = (y1, . . . , yn)) be a coordinate
chart near y0. Define h = ψ◦f ◦φ−1; it is enough to show that h−1(0)∩φ(U)
is a submanifold of φ(U) near 0.
Now, by the chain rule, dh = dψ◦df ◦dφ−1, and it’s a surjective map because
dψ and dφ−1 are invertible linear maps and since df is a surjection. There-
fore, we may assume that M = Rm, N = Rn, f : M → N with f(0) = 0,
and dfx : Rm → Rn is surjective for all x.
Let V = ker df0. Then Rm = V ⊕W , and df0 : W → Rn is an isomorphism.
Next, define H : V ×W → V ×Rn by H(v, w) = (v, f(v, w)). Note that the
differential of H at the origin has the following form:(

I 0
df0

∣∣∣
V

df0

∣∣∣
W

)
In particular, this says that dH(0,0) is an isomorphism, so that by the in-
verse function theorem, there is a neighborhood U0 of (0, 0) in V ×W such
that H(U0) ⊂ V × Rn is open and H : U0 → H(U0) is an isomorphism.
Furthermore, note that f−1(0) ∩ U0 = {(v, w) ∈ U0 : H(v, w) = (v, 0)}.
Accordingly, take (U0,H) as a coordinate chart, for then H(f−1(0)∩U0) =
U0 ∩ (V × 0).

Corollary 3.9.1.
If a is a regular value of f : M → N , then dim f−1(a) = dim(M)−dim(N).

Corollary 3.9.2.
Suppose that y0 is a regular value of f : M → N and f−1(y0) 6= ∅. Then for
all m ∈ f−1(y0), Tmf−1(y0) = ker(dfm).

Proof. If A is a manifold and (q, v) ∈ TQ, then there is a curve γ : (a, b) → Q
such that γ(0) = q and dγ( ddt) = v, by a previous exercise. Now, observe that
dimTmf

−1(y0) = dim ker dfm, so it is enough to prove that Tmf−1(y0) ⊂
ker dfm. Let v ∈ Tmf−1(y0). Then d(f ◦γ)0( ddt) = 0, since f ◦γ is a constant
map. Then by the chain rule, d(f ◦ γ)0( ddt) = dfγ(0)(dγ0( ddt)) = dfm(v).

Now let’s look at some applications of this.

Example 3.10.
Let f : Rn → R be given by x 7→ ||x||. Then dfx = (2xi)i, which means that
dfx is onto for all x except the origin. In particular, this means that 1 is a
regular value of f , which shows, via the previous theorem, that Sn−1 is a
submanifold of Rn.
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Example 3.11.
Recall that G = GL(n,R) is a manifold of dimension n2. Consider the
determinant map from G to R; it is smooth since it is a polynomial mapping.
Furthermore, 1 is a regular value of det. To see this, let A have determinant
1, and note that the differential detA is a 1 × n of partial derivatives, not
all of which can be 0. Thus, SL(n,R) is a submanifold of G, and it has
dimension n2 − 1.

Exercise 3.1.
Show that O(n), the set of all n × n orthogonal matrices, is a submanifold
of GL(n,R).
Hint: Consider the map f : GL(n,R) → Sym(n,R) given by A 7→ AAT .
Show that I is a regular value.

3.3 Transversality

We now explore another property related to submanifolds, which is actually
a generalization of regular values.

Definition 3.12. Transversality
Let F : M → N be a C∞ map and Z ⊂ N a submanifold. F is transverse
to Z if for every z ∈ Z and any m ∈ F−1(z), we have

TzZ + dFm(TmM) = TzN.

Thinking in terms of transverse things, the above definition says that
TzZ contains the orthogonal complement of the differential image (and vice
versa). That is, ”transverse” really does make sense here, and we can think
of it as the opposite of tangency.

Example 3.13.
Suppose that Z = {y0}. Then Z is transverse to F if and only if y0 is a
regular value of F .

Example 3.14.
Take M = N = R2. Consider F : M → N given by F (x, y) = (x, x2). Then
F is transverse to 0× R, but it is not transverse to R× 0.

The big theorem regarding transversality is the following one:

Theorem 3.15.
If F : M → N is transverse to Z, then F−1(Z) is a submanifold of M .
Moreover, for all m ∈ F−1(Z),

Tm(F−1(Z)) = (dFm)−1(TF (m)Z).
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Thus, dim(M)− dim(F−1(Z)) = dim(N)− dim(Z).

Proof. First, let us consider the special case that N = Rn, Z = Rk × 0 ⊂
Rk×Rn−k. Let π : Rk×Rn−k → Rn−k denote the canonical projection map.
Now, note the following:
(1) (π ◦ F )−1(0) = F−1(Z).
(2) d(π◦F )m(TmM) = dπF (m)(dF (TmM)) = dπF (m)(dFm(TM )+TF (m)Z) =
dπF (m)(Rn) = Rn−k.
Thus, d(π ◦ F )m(TmM) is surjective; that is, 0 is a regular value of (π ◦ F ),
and (π ◦F )−1(0) = F−1(Z) is a submanifold of M . Moreover, TMF−1(Z) =
ker d(π ◦ F )m = ker dπF (m) ◦ dFm = (dFm)−1(ker dπ) = (dFm)−1(TF (m)Z).
Finally, dimF−1(Z) = dim ker dπ ◦ Fm = dimM−dim Rn−k, since (dπ◦F )m
is surjective. Then we have dimM − dimRn−k = dimM − dimN − dimZ.
Now, to see why the special case implies the general case, simply note that
for all z ∈ Z, there is a coordinate chart (V, ψ = (x1, . . . , xn)) such that
ψ(Z) = ψ(V ) ∩ (Rk × 0).

Here are a couple of interesting examples of this theorem in action.

Example 3.16.
Consider two surfaces S1 and S2 in R3 such that TxS1 6= TxS2 for every x ∈
S1 ∩ S2. Let F = ι1 : S1 → R3, the inclusion map. Note that dFx(TxS1) =
TxS1, and as the tangent spaces of these surfaces are not equal, we must
have TxS1 + TxS2 = R3, for all x ∈ S1 ∩ S2. Thus, F is transverse to S2,
which says that F−1(S2) = S1 ∩ S2 is a submanifold of S1 of dimension 1,
by the previous theorem.

Example 3.17.
Let Z ⊂ N be a submanifold. Consider π : TN → N , which we know to be
surjective at every point inN by a previous exercise. In other words, we have
that π is transverse to Z, which says that π−1(Z) ⊂ TN is a submanifold
of TN . That is, TN

∣∣∣
Z

is a submanifold of TN .

3.4 Embeddings, Immersions, and Rank

Definition 3.18. Immersion
A smooth map f : Z → M is an immersion if its differential is always
1− 1.

f [Z] is often called an immersed submanifold of M . Note that every
submanifold is an immersed submanifold, where one takes the immersion to
be the inclusion map.
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Here’s a concept with which we will not do that much, but we’ll go ahead
and define it nevertheless.

Definition 3.19. Submersion
A map f : M → N is called a submersion if its differential at every point
is surjective.

Note that if f is a submersion, then every point of N is a regular value
of f ; thus, f−1(n) is a subamnifold of M for every n ∈ N .

Definition 3.20. Embedding
A smooth map f : Z → M is an embedding if Z ⊂ N is a submanifold
and f : Z → f [Z] is a diffeomorphism.

The image f [Z] is said to be an embedded submanifold. An equivalent
way to define an embedding is to say that it is a 1-1 immersion that is a
homeomorphism into M . The point here is that an embedded submanifold
inherits its topology from the larger space. An embedded submanifold is a
submanifold when the embedding is given by the inclusion map.
Thus, examples of embeddings are furnished by submanifolds and their in-
clusion maps, so let’s look at some examples of immersions that are not
embeddings to really illustrate the difference between the two concepts.

Example 3.21.
Let f : S1 → C be given by f(z) = z2. Now, dfz = 2z, and so it is easy to see
that f is an immersion. Furthermore, f is locally 1-1 , but it is not globally
injective (since, it is, in fact, a 2-1 mapping). So f is not an embedding.

Example 3.22.
Let A represent a (non-closed) figure 8 in the plane, which we can consider
to be the image of an interval under some smooth map from R into the
plane. Let us call this map g. Then is an example of a 1-1 immersion which
is not an embedding; in other words, A is an embedded submanifold which
is not an immersed submanifold.

Example 3.23.
Consider the following map of R into the torus (which we identify with
S1 × S1):

f : t 7→ (e2πit, e2π
√

2t).

The image of R under f is dense in S1 × S1, and f is an immersion which
is not an embedding.
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Definition 3.24. Rank
The rank of a map at a point is defined to be the rank of its differential on
the tangent space at that point.

Note that immersions have constant rank (in fact, they have rank equal
to the dimension of their domain). Before we move on to the constant rank
theorem, we state the following proposition.

Proposition 3.25.
If f : M → N is smooth and rank(f) = k at some point m0 ∈ M , then for
all m sufficiently close to m0, (rankfm) ≥ k.

Proof. The rank of f at m0 is the rank of the matrix (( ∂fi

∂xj
(m0))). By a

suitable rearrangement of components and coordinates, we may assume that
det (( ∂fi

∂xj
(m0)))i,j≤k 6= 0. Since the determinant is a continuous mapping,

this deteminant is also non-zero for points sufficiently close to m0.

The following theorem, which is a generalization of the Implicit Function
Theorem, applies in particular to immersions, but we state the more general
version.

Theorem 3.26. Rank Theorem
Suppose that f : M → N has rank k at all points m ∈ M . Then for all
m ∈M there are coordinate charts (U, φ) containing m and (V, ψ) containing
f(m) such that

(ψ ◦ f ◦ φ−1)(r1, · · · , rn) = (r1, · · · , rk, 0, · · · , 0).

Proof. As before, we may assume that M = Rm and N = Rn. Suppose that
f : M → N has rank k, f(0) = 0, and det (( ∂fi

∂xj
(0))i,j≤k) 6= 0.

Consider h : Rm → Rm given by h(x1, . . . , xm) = (f1(x), . . . , fk(x), xk+1, . . . , xm)).
Then

dh0 =

(
( ∂fi

∂xj
(0)) ∗

0 I

)
Then h is invertible in a neighborhood U of 0, and h(0) = 0. Now let
g = f ◦ (h

∣∣∣
U
)−1, so that

g(z1, . . . , zn) = (z1, . . . , zk, gk+1(z), . . . , gn(z))

and g(0) = 0. Now, note that

dgz =
(
I 0
∗ A(z)

)
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where A(z) = ( ∂fi

∂xj
(0)), k + 1 ≤ i ≤ n, k + 1 ≤ j ≤ m. Furthermore, as the

ranks of g and f are both k, the rank of A(z) must be 0, which says that
∂gi

∂zj
= 0 for k + 1 ≤ i ≤ n and k + 1 ≤ j ≤ m. Now consider K : V → Rn

(where V is some neighborhood of 0) defined by

K(y1, . . . , yn) = (y1, . . . , yk, yk+1−gk+1(y1, . . . , yk, 0, . . . , 0), . . . , yn−gn(y1, . . . , yk, 0, . . . , 0)).

Now, note that

dK0 =
(
I 0
∗ I

)
which says that K is a diffeomorphism near 0. Finally,

(K ◦ f ◦ h−1)(z1, . . . , zm) = K(g(z1, . . . , zn))
= K(z1, . . . , zk, gk+1(z), . . . , gn(z))

= (z1, . . . , zk, gk+1(z)−gk+1(z1, . . . , zk, 0, . . . , 0), . . . , gn(z)−gn(z1, . . . , zk, 0, . . . , 0).

But since ∂gi

∂zj
= 0 for i ≥ k + 1, we must have

gi(z)− gi(z1, . . . , zk, 0, . . . , 0) = 0 i ≥ k + 1.

Combining these statments, we have

(K ◦ f ◦ h−1)(z1, . . . , zm) = (z1, . . . , zk, 0, . . . , 0),

whence the desired statement holds.

Note that since immersions have constant rank, the theorem applies in
particular to them.

Exercise 3.2.
Define f : R3 → R6 by f(x, y, z) = (x2, y2, z2, yz, zx, xy). Is f an immersion?
Show that the restriction of f to S2 is an immersion of S2 into R6.

Exercise 3.3.
There is no immersion f : S2 → R2.

Exercise 3.4.
(a) Let N be a manifold. Prove that the diagonal ∆N = {(n, n) ∈ N ×N :
n ∈ N} is a submanifold of N ×N .
(b) Let F : M → N and g : L → N be smooth maps such that, for all
m ∈M and l ∈ L with f(m) = g(l) we have

dfm(TmM) + dgl(TlL) = TrN, r = f(m) = g(l).
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Show that
Z = {(m, l) ∈M × L : f(m) = g(l)}

is a submanifold of M × L.

Exercise 3.5.
Let f : Rn → Rn be a smooth map such that for every x with ||x|| ≥ 2, we
have ||f(x)|| < 1/||x||.
(a) ||f || attains its maximum value.
(b) f is not an immersion.

Exercise 3.6.
Let N be a closed submanifold of M . Show that every vector field X on N
can be extended to a vector field Y on M .
Hint: First extend the vector field in adapted coordinates. Next, use a
partition of unity to combine each of the locally defined extensions into a
global vector field.

Exercise 3.7.
Consider f(x, y) = y2+ 1

6x
6− 1

2x
2 on R2. For each c ∈ R, determine whether

or not f−1(c) is a submanifold of R2. Justify your answer.
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4 Vector Fields and Flows

4.1 The Correspondence between Flows and Vector Fields

Definition 4.1. Flow
A (global) flow on a manifold M is a map Φ : R×M →M such that for
all p ∈M and s, t ∈ R,
(1) Φ(0, p) = p
(2) Φ(t,Φ(s, p)) = Φ(s+ t, p).

Given a flow, the second property above tells us that we get a group
homomorphism of R into the group of diffeomorphisms on M by t 7→ Φt; for
this reason, the second property is called the group property of flows.

Example 4.2.
Let M = R. Then the following are examples of flows:
(1) Φ(t, p) = p · et
(2) Ψ(t, p) = t+ p.

Definition 4.3. Local Flow
A local flow is a map Φ : A→M , where A is open and A ⊃ {0}×M , that
satisfies the two flow properties in its domain of definition.

Definition 4.4. Integral Curve
Let X be a vector field on M . A curve γ : I →M for 0 ∈ I, an open interval
in R, is an integral curve of X through m0 ∈M if
(1) γ(0) = m0

(2) γ̇(t) = X(γ(t)).

At this point, recall that γ̇(t) = dγt( ddt). One way to think about integral
curves is the following: if I place a particle in a vector fieldX at point p, then
the integral curve describes how it will move on the manifold. The vector
field merely describes the tangent vectors (or the velocity) of the particle’s
trajectory at each point. This is one geometric interpretation of integral
curves.

Example 4.5.
Let M = R again, and let X(t) = t ddt . Then the integral curve of X through
p is given by p · et. Note that γ̇p(t) = p · et ddt = X(γp(t)).

Now, if we knew that integral curves existed and were unique, then given
a vector field X, we would define the corresponding flow by

Φ(s, p) = γp(s).

32



Conversely, given a local flow Φ : A → M , we can (locally) define a vector
field by

X(p) =
∂

∂t
Φ
∣∣∣
(0,p)

,

and we can check that γp(t) = Φ(t, p) are integral curves of X. This is
precisely the correspondence between flows and vector fields.
Now, there are two important issues to realize here. First, the correspon-
dence between flows and vector fields is only local, because flows need not
exist for all time. This is illustrated by the following example:

Example 4.6.
Let M = R and take X(t) = t2 ddt . γp(t) is an integral curve through p if

γ̇p(t) = (γp(t))2

subject to initial conditions γp(0) = t. If we integrate both sides with
perhaps a separation of variables operation as well, we see that if p 6= 0, the
(unique) solution to this ordinary differential equation is

γp(t) = − 1
t− 1

p

.

That is, the flow does not exist for all time unless p = 0 (where the solution
to the ODE is just γ0(t) = 0).

The other problem with our method above is that we have not established
the uniqueness of integral curves. As one might expect, we will do this
by way of the existence and uniqueness theorem for ordinary differential
equations with smooth dependence on inital conditions. This is part of
the content of the next theorem, in which we describe the correspondence
between vector fields and flows and check that the equations given above do
indeed make sense.

Theorem 4.7.
There is a (local) one-to-one correspondence between vector fields and local
flows.

Proof. For the forward direction, let Φ(t,m) be a local flow on M . Define a
vector field X on M by

X(p) =
d

dt

∣∣∣
t=0

Φ(t, p).
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We claim that γp(t) = Φ(t, p) is an integral curve of X; i.e.,

d

ds

∣∣∣
s=t
γp(s) = X(γp(t)).

To see this, pick a function f ∈ C∞(M). We want to show that

d

ds

∣∣∣
t=s

(f ◦ γp)(s) = (X(γp(t)))(f).

Now, note that

d

ds

∣∣∣
t=s

(f ◦ γp)(s) =
d

ds

∣∣∣
s=0

(f ◦ γp)(t+ s)

=
d

ds

∣∣∣
s=0

f(Φ(t+ s, p))

=
d

ds

∣∣∣
s=0

f(Φ(s,Φ(t, p)))

= [X(Φ(t, p))](f) = [X(γp(t))](f).

Now suppose that X is a vector field on M . We need to show the existence
of a local flow, and we want this local flow to be unique. Suppose first that
M ⊂ Rn is open. Then TM ' M × Rn; let (x1, . . . , xn) denote the global
coordinates. Then

X(p) = (p,
∑

Xi(p)
∂

∂xi
),

where each Xi ∈ C∞(M). γp(t) = (γ1
p(t), . . . , γ

n
p (t)) is an integral curve of

X if and only if
d

ds

∣∣∣
s=t
γp(s) = X(γp(t)).

Using the fact that { ∂
∂x1

, . . . , ∂
∂xn

} forms a basis for the tangent space at
each point p, we see that each component γi must satisfy

(γip)
′ = Xi(γ1

p(t), . . . , γ
n
p (t))

subject to the initial conditions

γip(0) = pi.

Now, from the theory of ordinary differential equations, existence and unique-
ness and smooth dependence of initial conditions tells us the following:
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(1) For any fixed p ∈M , there is r > 0 and ε > 0 such that for all q ∈ Br(p),
there is a curve γq : (−ε, ε) →M with

d

dt
(γiq) = Xi(γq) γq(0) = q.

(2) The map Φ : (−ε, ε)×Br(p) →M given by (t, q) 7→ γq(t) is smooth
(3) Each γq(t) is unique.
Thus, integral curves exist and are unique. Now we need to check that Φ
is, in fact, a local flow. To do this, first let σ(t) = Φ(t + s, q). We want
to show that σ(t) = γΦ(s,q)(t). First, let’s check that σ is an integral curve:
σ(0) = Φ(s, q), and

d

dt

∣∣∣
t0
σ(t) =

d

dt

∣∣∣
t0

Φ(t+ s, q)

=
d

dt

∣∣∣
t0+s

Φ(t, q)

=
d

dt

∣∣∣
t0+s

γq(t)

= X(γq(t0 + s))
= X(σ(t0).

Thus, σ is an integral curve of X through the point Φ(s, q). By uniqueness,
σ(t) = γΦ(s,q)(t). This gives us Φ(t,Φ(s, q)) = Φ(t + s, q). Finally, there
is a set A ⊂ R × Br(p) such that Φ : A → Br(p) is a local flow (take
A = Φ−1(Br(p)), for example, which is open since Φ is continuous.)
This gives us flows locally on Rn. To prove the existence and uniqueness of
flows in the general case, first observe that if ψ : M → N is a diffeomorphism
and X : M → TM is a vector field, we have

(dψ(X))(q) = dψψ−1(q)(X(ψ−1(q))).

Note also that if ψ is a flow of X, then ψ ◦ Φ(ψ × ι) is a flow of dψ(X),
where ι denotes the identity.
Thus, if (U,ψ) is a coordinate chart with ψ(U) = Br(p), then if given a
vector field X on M , we obtain a flow of dψ(X

∣∣∣
U
), which in turn implies

that we get a flow ΦU of X
∣∣∣
U
. We need to patch ΦU into a flow on the

manifold (i.e., show that Φ is well-defined), and we’ll be done.
To this end, let U and V be two open sets with flows ΦU and ΦV , respectively.
We want to show that for all x ∈ U ∩ V , ΦU (t, x) = ΦV (t, x), whenever
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both sides make sense. Let γ(t) = ΦU (t, x) and σ(t) = ΦV (t, x), where
γ : I1 → M and σ : I2 → M . Let J = {t ∈ I1 ∩ I2 : γ(t) = σ(t)}. Note
that J is open because of uniqueness of solutions of ODEs, and J is closed
since J = (γ × σ)−1(∆M ) is a closed set. Thus, since I1 ∩ I2 is connected,
J = I1 ∩ I2.

To summarize, the correspondence between vector fields X near a point
p and integral curves γ through p is given by following system of ODE’s :

Xi(γp) = γ̇ip

with initial conditions
γip(0) = pi.

The existence and uniqueness theorem for ordinary differential equations
guarantees that local solutions exist and are unique. Thus, insomuch as
we can solve ODE’s, we can solve this system to obtain a general form for
integral curves through a point p in order to define a local flow.
Also, note that if Φ1 : A1 →M and Φ2 : A2 →M are local flows of X, then
so is their “union” Φ : A1 ∪ A2 → M . (We essentially showed this in the
last proof). Therefore, it makes sense to speak of the maximal flow of X
on the manifold, which is defined to be the union of all flows.

Exercise 4.1.
Find the flows of the following vector fields on R2:
(1) X = x1

∂
∂x1

+ x2
∂
∂x2

.

(2) Y = x1
∂
∂x2

− x2
∂
∂x1

.

Exercise 4.2.
Prove that if a vector field X on a manifold M satisfies X(m0) = 0 for some
m0 ∈ M , then there is an open set W containing m0 such that the flow of
X on W exists for all t ∈ [0, 1].

Exercise 4.3.
Consider the following vector fields on R4 − {0}.
(1) X1 = −x2

∂
∂x1

+ x1
∂
∂x2

+ x4
∂
∂x2

− x3
∂
∂x4

(2) X2 = −x3
∂
∂x1

− x4
∂
∂x2

+ x1
∂
∂x2

+ x2
∂
∂x4

(3) X3 = −x4
∂
∂x1

+ x3
∂
∂x2

− x2
∂
∂x2

+ x1
∂
∂x4

Show the following:
(a) Each Xi defines a smooth, non-vanishing vector field on S3.
(b) For each p ∈ S3, {Xi(p)} forms a basis for TpS3.
(c) Compute the flows for X1.
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(d) Let f : S3 → R be given by f(x1, x2, x3, x4) = x3x1− x2x4; show that f
is constant along integral curves of X1.

Exercise 4.4.
Let M be a manifold. An isotopy on M is a collection of diffeomorphisms
{ft : M →M}t∈(−ε,ε) such that
1) f0 is the identity.
2) The map (−ε, ε)×M →M given by (t,m) 7→ ft(m) is smooth.
A time-dependent vector field {Xt} is a smooth map (−ε, ε)×M → TM

given by (t,m) 7→ Xt(m). An isotopy defines a time-dependent vector field
by

Xs(fs(m)) =
d

dt

∣∣∣
t=s
ft(m).

Prove: given a time-dependent vector field {Xt}, there is an isotopy {ft}
such that the previous equation holds.
Hint: Let X(t,m) = ( ddt , Xt(m)), a vector field on R ×M . Its local flow
Φs(t,m) is of the form Φs(t,m) = (Φ1

s(t,m),Φ2
s(t,m)). Show that Φ2

s(t,m) =
s+ t.

Exercise 4.5.
Consider a time-dependent vector field Xt(m) = t ddθ on S1. Compute the
corresponding isotopy.

The fact that global flows need not exist motivates the following defini-
tion.

Definition 4.8. Complete Vector Field
A vector field is complete if the maximal flow exists for all time.

Example 4.9.
We have already shown that the vector field X(p) = p2 d

dt has a flow which
does not exist for all time. Hence, X is not complete.

The next theorem asserts that any vector field with compact support is
complete. Before we prove this, we need the following lemma.

Lemma 4.10.
Let X be a vector field on M with flow Φ(t, x). Suppose that there is an
element a ∈ R such that Φ(a, x) exists for all x ∈M . Then (dΦa)x(X(x)) =
X(Φa(x)), where Φa(x) = Φ(a, x).
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Proof. Fix f ∈ C∞(M). Then

((dΦa)x)(X(x))(f) = (X(x))(f ◦ Φa).

Furthermore, for all y ∈M , we have

(X(y))(f) =
d

dt

∣∣∣
t=0

f(Φ(t, y)),

by the definition of a flow. Therefore,

(X(x))(f ◦ Φa) =
d

dt

∣∣∣
t=0

(f ◦ Φa)(Φ(t, x))

=
d

dt

∣∣∣
t=0

f(Φ(a,Φ(t, x)))

=
d

dt

∣∣∣
t=0

f(Φ(a+ t, x))

=
d

dt

∣∣∣
t=0

f(Φ(t,Φa(x)))

= X(Φa(x))(f).

Theorem 4.11.
Let X be a vector field on a manifold M . If its support is compact, then it
is a complete vector field.

Proof. Note first that if X(x) = 0, then Φ(t, x) = 0 for all t. So on M −
supp(X), the flow of X is defined for all t. Let A ⊂ R×M be the domain of
the flow Φ of X. As {0}× supp(X) ⊂ A is compact and A is open, there is a
number ε > 0 such that (−ε, ε)× supp(X) ⊂ A. If Φ did not exist on [ε, 2ε],
then we could define it by Φ1(t, x) = Φ(ε,Φ(t− ε, x)) = Φε(Φ(t− ε, x)). We
claim that Φ1(t, x) is a flow on X.

d

dt

∣∣∣
t=0

Φ1(t, x) =
d

dt

∣∣∣
t=0

Φε(Φ(t− ε, x)), t ∈ [ε, 2ε]

= (dΦε)(X(Φ(t0 − ε, x)))
= X(Φε(Φ(t0 − ε, x)))
= X(Φ(ε+ (t0 − ε), x))
= X(Φ1(t0, x)).

Hence, Φ1 = Φ
∣∣∣
[ε,2ε]×M

, by uniqueness of flows and the maximality of Φ1.

By induction, we can then see that [kε, (k+ 1)ε]×M ⊂ A for all k ∈ N.
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4.2 Lie Derivatives

Now we discuss one way to differentiate vector fields.

Definition 4.12. Lie derivative
Let X and Y be vector fields on a manifold M . Let φt denote the (local)
flow of X. The Lie derivative LXY of Y with respect to X is a vector
field on M given by

(LXY )(p) = lim
t→0

1
t
((dΦ−t)x(Y (Φt(p))− Y (p))) =

d

dt

∣∣∣
t=0

(dΦ−t)x(Y (Φt(p))).

We can think of the Lie derivative as differentiating the vector field Y
with respect to the vector field X. As it turns out, this is an already familiar
object, the Lie bracket.

Proposition 4.13.
LXY = [X,Y ].

Proof. Observe that if γ : I → TpM is a curve, then for any f ∈ C∞(M),

(
d

dt

∣∣∣
t=0

γ(t))(f) =
d

dt

∣∣∣
t=0

(γ(t)f).

To see this, simply compute both sides in coordinates, and you’ll get the
same answer on both sides.
Now, fix f ∈ C∞(M).

((LXY )(p))(f) =
d

dt

∣∣∣
t=0

((dΦt)(Y (Φt(p)))(f))

=
d

dt

∣∣∣
t=0

(Y (Φt(p))(f ◦ Φ−t)).

Now denote the flow of Y by Ψs. Then for all q ∈M ,

(Y (q))(f) =
d

ds

∣∣∣
s=0

f(Ψs(q)).

Thus,

((LXY )(p))(f) =
d

dt

∣∣∣
t=0

(
∂

∂s

∣∣∣
s=0

(f ◦ Φ−t)(Ψs(Φt(p))))

=
∂2

∂t∂s

∣∣∣
(0,0)

(f ◦ Φ−t ◦Ψs ◦ Φt)(p).
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Let H = (f ◦ Φ−t ◦ Ψs ◦ Φt)(p). Let G(s, a, b) = (f ◦ Φa ◦ Ψs ◦ Φb). Then
H(s, t) = G(s,−t, t). Also,

∂H

∂s
(s, t) =

∂G

∂s
(s,−t, t)

=
∂2H

∂t∂s
(s, t)

= − ∂2G

∂a∂s
(0, 0, 0) +

∂2G

∂b∂s
(0, 0, 0).

Furthermore,

∂2G

∂a∂s
(0, 0, 0) =

∂2G

∂s∂a
(0, 0, 0)

=
∂

∂a

∣∣∣
s=0

(
∂G

∂a
)(s, 0, 0)

=
∂

∂s

∣∣∣
s=0

∂

∂a

∣∣∣
a=0

(f ◦ Φa)(Ψs(p))

=
∂

∂s

∣∣∣
s=0

(X(f))(Ψs(p))

= (Y (X(f)))(p).

Thus, we have that

− ∂2G

∂a∂s
(0, 0, 0) = −Y (X(f)).

Similarly, we get that

∂2G

∂b∂s
(0, 0, 0) = X(Y (f)).

Thus, it follows that LXY = [X,Y ].

The following proposition is a nice geometric characterization of what it
means for the Lie bracket to be zero.

Proposition 4.14.
Let Φt and Ψs denote local flows of X and Y , respectively. Then

[X,Y ] = 0 if and only if Φt ◦Ψs = Ψs ◦ Φt.
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Proof. First suppose that Φt ◦Ψs = Ψs ◦Φt whenever both sides make sense.
Now, for all x ∈M ,

d

dt

∣∣∣
t=0

Φt(Ψs(s)) =
d

dt

∣∣∣
t=0

(Ψs ◦ Φt)(x).

Thus,
X(Ψs(x)) = (dΨ)(X(x)).

In turn, we see that
dΨ−s(X(Ψs(x))) = X(x)

for all s, which means that

0 =
d

ds

∣∣∣
s=0

(dΨ−s)(X(Ψs(x))) = LYX = [Y,X] = −[X,Y ].

For the converse, suppose that [X,Y ] = 0. Then

0 =
d

dh

∣∣∣
h=0

(dΦ−h)(Y (Φh(p)))

for all p ∈M , which implies that

d

dt

∣∣∣
t=s

(dΦ−t)(Y (Φ−t(p))) =
d

dh

∣∣∣
h=0

(dΦ−s+h)(Y (Φs+h(p)))

=
d

dh

∣∣∣
h=0

(dΦ−s)[(dΦ−h)(Y (Φh(Φs(p))))]

= (dΦ−s)[
d

dh

∣∣∣
h=0

(dΦ−h)(Y (Φh(Φs(p))))]

= 0.

(Here, we use the fact that dΦ is linear, viewing Y (Φh(Φs(p)) as a curve in
TΦs(p)M. As an aside, note that if A : V → W is linear with V ,W finite-
dimensional, then d

dt(A(γ(t))) = A( ddtγ(t)).) So

dΦ−t(Y (Φt(p))) = dΦ0(Y (Φ0(p)))

for sufficiently small t. But

dΦ0(Y (Φ0(p))) = Y (p)

so that
Y (Φt(p)) = (dΦt(p))(Y (p));
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i.e., Y is constant along integral curves of X.
Now, fix p ∈ M and t ∈ R. Consider γ(s) = Φt(Ψs(p)). As γ(0) = Φt(p),
we can then compute the derivative of γ with respect to s to show that γ
is an integral curve of Y and then apply the uniqueness of integral curves.
Explicitly,

d

ds

∣∣∣
s=s0

γ =
d

ds

∣∣∣
s=s0

[Φt(Ψs(p))]

= (dΦt)(
d

ds

∣∣∣
s=s0

Ψs(p)

= (dΦt)(Y (Ψs(p))) = Y ((Φt ◦Ψs)(p))
= Y (γ(s0)).

So γ(s) is an integral curve through Φt(p). By uniqueness of integral curves,

Φt(Ψs(p)) = γ(s) = Ψs(Φt(p)).

Exercise 4.6.
Suppose that M and N are manifolds. Show that if X ∈ Γ(TM) and
Y ∈ Γ(TN), then [X,Y ] = 0 on M ×N .

Exercise 4.7.
Suppose that X and Y are vector fields on M . Compute an expression for
[X,Y ] in local coordinates.

4.3 F -related Vector Fields

Consider the following example:

Example 4.15. Let M = R2, and define X(x, y) = y ∂
∂x − x ∂

∂y . This is
the circular flow around the origin. Now consider the natural projection
F : R2 → R. Note that dFx(X(x)) is not a well-defined vector field on R;
that is, we cannot use F to push X forward.

Now suppose that F : M → M ′ is a diffeomorphism, and X ∈ Γ(TM),
X ′ ∈ Γ(TM ′). Then X ′(m′) = (dF )F−1(m)(X(F−1(m′))) is a vector field on
M ; that is, the following diagram commutes:

TM
dF // TM ′

M

X

OO

F // M ′

X′

OO
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That is, we can push vector fields forward by diffeomorphisms but not
by arbitrary smooth maps, as the following example shows. This leads to
the concept of two vector fields being F-related.

Definition 4.16. F-related
Let F : M → N be a map, and let X and Y be vector fields on X and Y ,
respectively. X and Y are F-related if dF ◦X = Y ◦ F.

Note that if F : M → N is a diffeomorphism and X is any vector field on
M , then X is F -related to a unique vector field on N . However, in general,
one vector field on M can be F -related to many different vector fields on N .

Example 4.17.
Vector fields on a submanifold are F -related to those on the larger manifold
if and only if F is the inclusion.

To conclude the section, we state the following lemma, which will be of
some use in certain situations later on in the course.

Lemma 4.18.
Let F : M → N be a map, and suppose that X and Y are F -related to W
and Z, respectively. Then [X,Y ] is F -related to [W,Z].

Proof. For any h ∈ C∞(N),

(Y (h ◦ F ))(x) = Y (x)(h ◦ F )
= dFx(Y (x))(h)
= Z(F (x))(h)
= Z(h)(F (x))
= (Z(h) ◦ F )(x).

That is, if Y and Z are F -related, then for all h ∈ C∞(N), Y (h ◦ F ) =
Z(h) ◦ F . Similarly, X(h ◦ F ) = W (h) ◦ F for all h ∈ C∞(N). Thus,

([X,Y ])(h ◦ F ) = X(Y (h ◦ F ))− Y (X(h ◦ F ))
= X(Z(h) ◦ F )− Y (W (h) ◦ F )
= W (Z(h)) ◦ F − Z(W (h)) ◦ F
= ([W,Z](h) ◦ F ).
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Thus, we have that

[(dFx)([X,Y ])(x)](h) = ([X,Y ])(h ◦ F )(x)
= ([W,Z](h) ◦ F )(x)
= ([W,Z](F (x)))(h).

Therefore,
(dFx)[X,Y ] = [W,Z] ◦ F.

Exercise 4.8.
Let F : M → N be a smooth map of manifolds, and let X and Y be vector
fields onM and N , respectively, which are F -related. Show that any integral
curve of X is mapped by F to an integral curve of Y .

Exercise 4.9.
Suppose that N is a submanifold of M . Let Z and Y be two vector fields on
M such that for all x ∈ N , Z(x), Y (x) ∈ TxN . Show that [Z, Y ](x) ∈ TxN
as well.
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5 Vector Bundles

5.1 Basic Definitions

Definition 5.1. Vector Bundle
A real vector bundle E over a manifold M of rank k is a disjoint union
of smoothly varying k-dimensional vector spaces Ex, x ∈M . Specifically, if
E is a vector bundle over M , then E has the following ingredients :
(1) E is a manifold
(2) The projection π : E →M given by π[Ex] = {x} is smooth
(3) E is locally trivial: For all x ∈ M , there is an open neighborhood Ux
of x ∈M and a diffeomorphism ψ : π−1(U) → U ×Rk such that pr ◦ψ = π,
where pr is the natural projection from U × Rk to U . In addition, we have
that ψ

∣∣∣
Ey

: Ey → {y} × Rk is an isomorphism for all y ∈ U .

E is called the total space.
M is called the base space.
Ex is called a fiber of π : E →M .
The maps ψ : π−1(U) → U × Rk are called local trivializations.

Thus, a vector bundle is a manifold that is locally trivial; i.e., locally,
it is a projection. However, it may not be a global projection, for it may
somehow be “twisted”. The nature of this twisting is very important to
us. We can similarly define complex vector bundles, by the way, and every
complex vector bundle would be a real vector bundle of rank 2k.

Example 5.2.
The projection π : M × Rk → M is a vector bundle of rank k. It is an
example of a trivial vector bundle.

Definition 5.3.
A vector bundle over M is a trivial vector bundle if it is isomorphic to
M × Rk, where k = rank(E).

Example 5.4.
Let’s look at the tangent bundle. We already know that TM is a manifold
and π : TM →M is smooth. What are trivializations? For each x ∈M , take
a coordinate chart (U, φ = (x1, . . . , xn)). Then define ψ : π−1(U) → U ×Rn

by
(q, v) 7→ (q, (dx1)(v), . . . , (dxn)(v)),
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where v ∈ TqM , of course. Note that

ψ−1(q, v1, . . . , vn) = (q,
∑
i

vi
∂

∂xi
).

Example 5.5.
TS1 is trivial : (θ, x) 7→ (θ, x d

dθ ) is a global trivialization. (Alternatively,
x1

∂
∂x2

− x2
∂
∂x1

is a vector field on R2 whose restriction to S1 is a nowhere-
vanishing vector field on S1.)

Example 5.6.
As earlier mentioned, π : T ∗M →M is a vector bundle. We’ll consider this
example in greater detail later on.

Example 5.7.
Recall CPn is the set of all complex lines in Cn+1, which we identify with
{Cn+1 − {0}}/ , where two lines l, l′ are said to be equivalent if there is a
complex number λ 6= 0 such that l = λl′. Define

L = {(l, v) ∈ CPn × Cn+1 : v ∈ l}.

π : L → CPn is called the tautological complex line bundle. It is a
complex vector bundle of rank 1, and hence a real vector bundle of rank 2.
To see this, note that v ∈ [w] if and only if there is a λ ∈ Cx such that
λv = w. So if v = (v1, . . . , vn+1), w = (w1, . . . , wn+1) with w = λv, then
λ = wi/vi = wj/vj for all i, j. That is, we have vjwi = viwj for all i, j.
Thus, L = {([w], v) : vjwi = viwj}. From this, one can get that L is a
manifold.
As for trivializations, let Ui = {[w] ∈ CPn : wi 6= 0}. Define Ψi : π−1(Ui) →
Ui × C by

Ψi([w], v) = ([w], vi).

Then
ψ−1
i ([w], z) = ([w], z(

w1

wi
, . . . ,

wn+1

wi
)).

Here is a the appropriate notion of a vector bundle map. Not only should
it be a smooth map of manifolds, but it should also be an isomorphism when
restricted to fibers.
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Definition 5.8. Bundle Map
Let πE : E → M and πF : F → M be two vector bundles over a manifold
M . A smooth map f : E → F is a map of vector bundles if f(Ex) ⊂ Fx

for all x and if f
∣∣∣
Ex

: Ex → Fx is linear.

Definition 5.9. If f is a map of vector bundles and f−1 exists, then f is a
bundle isomorphism.

Note that we do not require g−1
∣∣∣
F (x)

to be linear, because it’s automatic.

That is, if f : M × Rk →M × Rk is given by

(m, v) 7→ (m,A(m)v)

where A : M → GL(R, k), then

f−1(m,w) = (m, ((A(m))−1w).

Exercise 5.1.
Let f be a vector bundle map that is an isomorphism on each fiber. Prove
that f−1 is smooth.
Hint: Prove that inv : GL(R, k) → GL(R, k) given by A 7→ A−1 is smooth.

Definition 5.10. Section
A section s : M → E of a vector bundle π : E → M is a C∞ map such
that π ◦ s = id

∣∣∣
M

. That is, a smooth map from M to E such that s(x) ∈ Ex
for all x.

The collection of sections of E is denoted by Γ(E).

Example 5.11.
s(x) = 0x ∈ Ex is a section called the zero section.

Example 5.12.
Vector fields on M are sections of the tangent bundle, hence the notation
Γ(TM).

Note that if s ∈ Γ(E) and f ∈ C∞(M), then (fs)(x) = f(x)s(x) is also
a section; thus, we see that Γ(E) is a C∞(M)−module.

Definition 5.13. Local Section
A local section of π : E → M is a section of π−1[U ] = E

∣∣∣
U

for some
open U ⊂ M . Alternatively, a local section is a map s : U → E such that
π ◦ s = idM .
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Example 5.14.
If (U, x1, . . . , xn) is a coordinate chart on M , then q 7→ ∂

∂xi

∣∣∣
q
is a local section

of TM .

Proposition 5.15.
A vector bundle of rank k is trivial if and only if there are sections s1, . . . , sk ∈
Γ(E) such that, for all x ∈ M , {s1(x), · · · , sk(x)} is a basis of Ex. Such a
collection of sections is also called a frame.

Proof. Suppose that E is a trivial vector bundle over a manifold M . Then
we have a global trivialization ψ : π−1(M) →M × Rk. Define

si(x) = ψ−1
x (ei)

where {e1, . . . , ek} is the canonical basis for Rk. Then the collection {s1, . . . , sk}
satisfies the desired properties.
Conversely, suppose that we have smooth sections s1, . . . , sk that form a
basis of Ex at every x. Then a global trivialization is given by

(q, v1, . . . , vk) 7→
∑
i

visi(q).

Exercise 5.2.
Let x ∈M and v ∈ Ex. Then there is a global section s such that s(x) = v.

5.2 Vector Bundles via Transition Maps

Suppose that π : E →M is a vector bundle of rank k, {Uα} is a cover of M
such that ψα : π−1[Uα] → Uα × Rk is a local trivialization. If Uα ∩ Uβ 6= ∅,
we have a map

ψβ ◦ ψ−1
α : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk

given by
(q, v) 7→ (q, ψαβ(q)v).

Note that ψαβ : Uα∩Uβ → GL(Rk) is smooth, because for every basis vector
ej of Rk, the map

q 7→ ψαβ(q)ej
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is smooth. Such maps are called a transition maps for the bundle π : E →
M .

Transition maps characterize the “twisting” in a vector bundle over a
manifold; that is, they tell us how the bundle changes over the manifold.
Furthermore, it turns out that vector bundles are characterized (up to iso-
morphism) by their transition maps. We now state this result, but first, we
need a couple of definitions.

Definition 5.16. Cocycle Conditions
Consider the maps φαβ from the previous definition. If, for all α, β, and γ
we have in GL(Rk),
(1) φαα = id
(2) φαβ · φβα = id
(3) φαβ · φβγ = φαγ
the transition maps {φαβ} are said to satisfy the cocycle conditions.

Theorem 5.17. Let M be a manifold, {Uα} an open cover, and {φαβ :
Uα ∩ Uβ → GL(Rk)} a collection of smooth maps satisfying the cocycle
conditions. Then there is a unique vector bundle E over M of rank k with
transition maps {φαβ}.

Proof. The following is only a sketch of the proof, but from this sketch, one
can get at least some idea as to why this theorem is true. Let

E =
∐
α

(Uα × Rk).

Define a relation on E by

(q, v) ∼ (q′, v′) if and only if q = q′, ψβα(v) = v′.

The cocyle conditions hold if and only if this relation is an equivalence
relation. Let E = E/ ∼, and write [q, v] for the equivalence class of (q, v).
We have π : E → M given by π([q, v]) = q. Note that π−1(Uα) = {[q, v] :
(q, v) ∈ Uα × Rk}, so that we obtain trivializations π−1(Uα) → Uα × Rk

given by [q, v] 7→ (q, v). Finally, one needs to check that this assignment is
well-defined.

Let’s illustrate such a construction via an example.

Example 5.18.
Let πE : E →M and πF : F →M be vector bundles. We want to construct
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E⊕F →M so that (E⊕F )x = Ex⊕Fx. To proceed, pick an open cover {Uα}
of M such that E

∣∣∣Uα and F
∣∣∣
Uα

are trivial. Let ψEαβ : Uα ∩ Uβ → GL(Rk)

and ψFαβ : Uα ∩ Uβ → GL(Rl) be transition maps. Define

ψE⊕Fαβ (a) =
(
ψEαβ(a) 0

0 ψFαβ(a)

)
∈ GL(Rk ⊕ Rl).

ψE⊕Fαβ are smooth and satisfy cocycle conditions, as one can check; therefore,
there is a vector bundle with transition maps ψE⊕Fαβ , which we denote by
E ⊕ F .

Let V and W be finite-dimensional vector spaces, A ∈ GL(V ) and B ∈
GL(W ) over M . Then
(1) A⊕B ∈ GL(V ⊕W )
(2) A⊗B ∈ GL(V ⊗W )
(3) Hom(E,F ) ∈ GL(Hom(V,W ))
(Here, Hom(A,B)T = B ◦ T ◦A−1.)
(4) A∗

(Here, A∗(l) = l ◦A−1.) (5) Λk(A) : Λk(V ) → Λk(V ).
Mirroring the construction given above, we can construct transition maps

for the following vector bundles (here, E and F are vector bundles over M :
(1) E ⊗ F
(2) E∗

(3) Hom(E,F )
(4) Λk(E).

Exercise 5.3.
Compute transition maps for the tautological real line bundle L 7→ RPn:

L = {(l, v) :∈ RPn × Rn+1 : v ∈ l}.

Also compute transition maps for L⊗L. (Hint: write down the isomorphism
R⊗ R → R.)

Exercise 5.4.
Let πE : E →M and πF : F →M be vector bundles over M .
(a) Show that E × F is a vector bundle over M ×M .
(b) Explain why G = {(e, f) ∈ E ×F : πE(e) = πF (f)} can be considered a
vector bundle over M .
(c) Show that, as a vector bundle over M , G is isomorphic to E ⊕ F .
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Exercise 5.5.
Let πE : E → M and πF : F → M be two vector bundles. Let TLΓ(E) →
Γ(F ) be an R-linear map such that for any f ∈ C∞(M) and any s ∈ Γ(E),

T (fs) = fT (s).

Show that there is a vector bundle map ψ : E → F such that ψ ◦ s = T (s)
for any s ∈ Γ(E).
Hint: given v ∈ Ex, use a previous exercise to find s ∈ Γ(E) with s(x) = v.
Define ψ(v) = [T (s)](x). Show that ψ is well-defined. You may wish to use
local trivializations to check the smoothness of ψ.

5.3 The Cotangent Bundle as a Vector Bundle

Now we return to the cotangent bundle. Our goal here will be to compute
transition maps and to show that (T ∗M) = (TM)∗ (i.e., the cotangent bun-
dle is the dual bundle of the tangent bundle).
First, let’s compute transition maps for the tangent bundle. Let U be an
open subset ofM for which we have coordinates (x1, . . . , xn) and (y1, · · · , yn).
Then { ∂

∂xi
} and { ∂

∂yi
} define trivializations of the tangent bundle TU . In

particular, we send

U × Rk → TU by (q, (v1, . . . , vn)) 7→
∑

vi
∂

∂xi

∣∣∣
q
.

(Since we can always invert, the direction in which we write this function
does not matter.) Now let us compose, so that transition maps are given by

(q, (v1, . . . , vn)) 7→ (q, . . . ,
∑
j

vj
∂yi
∂xj

(q), . . .).

That is, the transition maps ψ : U → GL(Rn) are given by (where i indexes
rows and j indexes columns)

q 7→ (
∂yi
∂xj

(q)).

Now, on this open set U , {dxi} and {dyj} are both frames of T ∗U . We have
the following maps :

U × Rn → T ∗U by (q, η1, . . . , ηn) 7→ (q,
∑

ηi(dxi)q)

51



and
T ∗U 7→ U × Rn by (q, η) 7→ (q, (η(

∂

∂y1
), . . . , η(

∂

∂yn
))).

So the transition maps for the contangent bundle are given by

(q, (η1, . . . , ηn)) 7→ (q, . . . ,
∑

ηj(dxj)q(
∂

∂yi
), . . .).

That is, our map U → GL(Rn) here is given by

q 7→ (
∂xj
∂yi

(q)).

By the chain rule, ∑ ∂yi
∂xj

∂xj
∂yk

= δik;

that is, the matrix

(
∂yi
∂xj

)−1 = (
∂xi
∂yj

).

Thus, the transition maps for the contangent bundle are the inverse trans-
pose of the transition maps for the tangent bundle. This shows that T ∗U '
(TU)∗ as vector bundles.
Here is a similar exercise:

Exercise 5.6.
Let M and N be two manifolds. Show that T ∗(M ×N) ' T ∗M × T ∗N.
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6 Differential Forms

6.1 The Exterior Derivative

We now change modes a bit and study differential forms. Roughly speaking,
a differential form at a point q is an alternating multi-linear map on the
tangent space to the manifold at that point. Here’s an “official” definition:

Definition 6.1. Differential Form
A differential form on a manifold M is an element

ω ∈ Γ(Λk(T ∗M))

for some k. Using multi-index notation, locally (i.e., within a coordinate
chart), we can write ω =

∑∣∣∣I∣∣∣=k aIdxI , where aI ∈ C∞(M).

By Ωk(M), we mean the collection of all k-forms on M , and by Ω(M), we
mean the collection of forms on M .
In particular, Ω0(M) = C∞(M), the collection of smooth functions from
M → R.

Example 6.2.
Suppose that M = Rn, where x1. . . . , xn are the standard (global) coor-
dinates. Then dx1, . . . , dxn are 1-forms on M . Also, let us write dxI =
dxi1 ∧ . . . ∧ dxik , 1 ≤ i1 ≤ . . . ≤ ik ≤ n, where we say that |I| = k. The
collection of wedge products like this forms a basis for Λk(T ∗qM). Thus, if
ω ∈ Ωk(M), then ωx =

∑
|I| = kaIdxI , where aI ∈ C∞(M).

One major fact regarding forms is that we can differentiate them. The
differentiation operator is called the exterior derivative and is character-
ized in the following theorem.

Theorem 6.3.
For every manifold M , there is a unique operator

dM : Ω(M) → Ω(M)

with the following properties :
(1) dM (Ωk(M)) ⊂ Ωk+1(M)
(2) dM is R-linear
(3) dMf = df for all f ∈ C∞(M)
(4) dM is local : For all open sets U and all ω ∈ Ω(M), (dMω)

∣∣∣
U

= dU (ω
∣∣∣
U
)

(5) dM (ω ∧ η) = (dMω) ∧ η + (−1)kω ∧ (dMη) for ω ∈ Ωk(M), η ∈ Ωl(M)
(6) dM ◦ dM = 0.
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Proof. First we show that dM is unique. Suppose that dM exists. Fix a coor-
dinate chart (U, (x1, . . . , xm)). Then for all α ∈ Ωk(M), α

∣∣∣
U

=
∑

|I|=k aIdxI ,

where aI ∈ C∞(U). Then

dα
∣∣∣
U

= d(α
∣∣∣
U
)

= dU (
∑

aIdxI)

=
∑
I

(dUaI ∧ dxi1 ∧ . . . ∧ dxin + . . .)

=
∑
I

dUaI ∧ dxI

since d2
U = 0. Now, for all f ∈ C∞(M),

df =
∑ ∂f

∂xj
dxj .

So daI∧dxI =
∑

j
∂aI
∂xj

dxj∧dxI , which means that dα
∣∣∣
U

=
∑

I,j
∂aI
∂xj

dxj∧dxI ;

i.e., dα
∣∣∣
U

is independent of coordinate chart, which says in turn that dα is
uniquely defined. Thus, d is unique, provided that it exists.
But what about existence? For every coordinate patch (U, (x1, . . . , xn)),
define dU : Ωk(U) → Ωk+1 by dU (

∑
aIdxI) =

∑
daIdxI . Note in particular

that we define dUa = da if a ∈ C∞(M) and that dU (dxI) = 0.
With this definition, let’s check (1) → (6). First, (1),(2), and (3) follow
almost directly by our definition of d, and are left to the reader.
(4) If f ∈ C∞(U) and V ⊂ U is open, then

dU (f
∣∣∣
V

) = d(f
∣∣∣
V

) = df
∣∣∣
V

= (dUf)
∣∣∣
V
.

(5) We check in coordinates: Let I = (i1, . . . , ik), J = (ji, . . . , js), ir 6= j′r
∀r, r′. Then

dU (aIdxI ∧ bJdxJ) = dU (aIbJdxI ∧ dxJ)

=
∑
j

∂

∂xj
(aIbJ)dxj ∧ dxI ∧ dxJ

=
∑
j

∂aI
∂xj

bJdxj ∧ dxI ∧ dxJ +
∂bJ
∂xj

aIdxj ∧ dxI ∧ dxJ
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= (
∑
j

∂aI
∂xj

dxj ∧ dxI) ∧ bJdxJ + (−1)kaIdxI
∑
j

∂bJ
∂xj

bJdxj ∧ dxJ

= d(aIdxI) ∧ (bJ)dxJ + (−1)k(aIdxI) ∧ d(bJdxJ).

(6) One again, in coordinates, we have

dU (dU (aIdxI)) = dU (
∑
j

∂aI
∂xj

dxj ∧ dxI)

=
∑
i,j

∂2aI
∂xi∂xj

dxi ∧ dxj ∧ dxI

= 0

since mixed partials commute and since dxi ∧ dxj = −dxj ∧ dxi.

Definition 6.4. Exterior Derivative
The operator described in the previous theorem is called the exterior
derivative.

As a remark, note that ω : M → Λk(T ∗M) is smooth if and only if for
any smooth vector fields X1, . . . , Xk ∈ Γ(TM), ω(X1, . . . , Xk) is a smooth
function on M .

Now, since d is unique and local, we usually drop the subscript M and
just write d. Also, keep in mind that for f ∈ C∞(U), we have (locally)

df =
∑
i

∂f

∂xi
dxi.

Furthermore, note that if dimM = m, then λn(T ∗qM) = 0 for all q ∈ M if
n > m; hence, dω = 0 for every ω ∈ Ωm(M).
At this point, the reader might ask where we are headed with this discus-
sion. One answer to this question is that forms are important for us for two
reasons: The first is that they will lead to the theory of integration, and
in particular to Stokes’s Theorem, which we will see in the next chapter.
Also, however, the properties of d lead naturally to the de Rham cohomol-
ogy groups of a manifold, which are a certain collection of groups associated
with the forms on a manifold. The next few sections will develop the neces-
sary machinery to talk about both of these topics. Specifically, we need:
1) Pull-backs: If f : M → N is smooth, it induces a linear map f∗ : Ω(N) →
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Ω(M).
2) Contractions: Given a vector field, we can define a linear map that takes
k forms to k − 1 forms.
3) Lie derivatives of forms: This is another way to differentiate forms which
is related to contractions and the exterior derivative.
Armed with these concepts, we can then begin to discuss de Rham coho-
mology and in particular find the cohomology groups for Rn (the Poincare
Lemma). We begin with pull-backs.

6.2 Pull-backs of Differential Forms

Let f : M → N be a smooth map. For all q ∈M , we have dfq : TqM → TqN ,
which in turn induces a map of dual spaces (dfq)∗ : T ∗f(q)N → T ∗qM. In turn,
this map of dual spaces induces a map of exterior algebras Λk((dfq)∗) :
Λk(T ∗f(q)N) → Λk(T ∗qM), for all k. In addition, we have, for all ν ∈
Λk(T ∗f(q)N),

Λk(df∗q )(ν)(v1, . . . , vk) = ν(dfq(v1), . . . , dfq(vk)),

for all v1, . . . , vk ∈ TqM . Thus, we see that f : M → N defines a map
f∗ : Ωk(N) → Ωk(M) which is given by

(f∗ν)(v1, . . . , vk) = vf(q)(dfq(v1), . . . , dfq(vk)).

This induced map of forms f∗ is called the pull-back . As we will see
later on, it actually gives rise to our familiar change of coordinates formulae
from calculus. For now, however, we’ll prove a couple of lemmas which will
tell us how to calculate pull-backs of forms, which we’ll have to do from
time to time throughout the next few sections. In particular, note that if
g ∈ C∞(M), then f∗g = g ◦ f. In addition, the first lemma is automatic
from the way we’ve defined the pull-back.

Lemma 6.5.
For all forms ω and µ in Ω(M), f∗(ω ∧ µ) = f∗(ω) ∧ f∗(µ).

Lemma 6.6.
Let f : M → N be a map, and suppose that ω ∈ Ω(M). Then

f∗d(ω) = d(f∗ω).
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Proof. First consider the case that ω is a 0-form (i.e., ω ∈ C∞(M)). Now,
on Ω0(N), f∗ω = ω ◦ f . Then

(f∗(dω))q(v) = (dω)f(q)((df)q(v))
= (dωf(q) ◦ dfq)(v)
= d(ω ◦ f)q(v)
= d(f∗ω)q(v).

Next, let (U, (x1, . . . , xn)) be any coordinate chart on N and ω ∈ Ωk(N).
Then ω

∣∣∣
U

=
∑

|I|=k aIdxI . Thus, dω
∣∣∣
U

=
∑

I daI ∧ dxI , so that from the
first case, we have

f∗(dω
∣∣∣
U
) = f∗(

∑
daI ∧ dxI)

=
∑

f∗(daI) ∧ f∗(dxI)

=
∑

f∗(daI) ∧ d(f∗xi1) ∧ . . . ∧ d(f∗xin).

Also, we have

d(f∗ω
∣∣∣
U
) = d(f∗(

∑
aIdxI))

=
∑

f∗aIf
∗(dxi1) ∧ . . . ∧ (dxin)

=
∑

df∗(aI)d(f∗xi1) ∧ . . . ∧ d(f∗xin).

Then again, by the first case, we see that

f∗(dω
∣∣∣
U
) = df∗(ω

∣∣∣
U
).

Here’s an example.

Example 6.7.
Let f : R2 → R2 be given by

(r, θ) 7→ (r cos θ, r sin θ).

Let’s calculate the pull-back of the volume form dx∧ dy on R2 by this map.

f∗(dx ∧ dy) = d(f∗x) ∧ d(f∗y)
= (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ)
= (cos θ · r cos θdr ∧ dθ + (−r sin θ) sin θdθ ∧ dr)
= rdr ∧ dθ.

57



6.3 Contractions

Now we’ll talk some about contractions. Let V be a finite-dimensional real
vector space with u ∈ V . Let η ∈ Λk(V ∗). Define the contraction of u
with η to be the following element of Λk−1(V ∗):

(ι(u)η)(v1, . . . , vk−1) = η(u, v1, . . . , vk−1).

Thus, given u ∈ V , ι(u) defines a map from Λk(V ∗) → Λk−1(V ∗). Note a
special case of this definition:
If η ∈ Λ1(V ∗) ' V ∗, then ι(u)η = η(u). Thus, ι(u) : V ∗ → R.

Example 6.8.
Suppose l1, l2 ∈ V ∗, so that l1 ∧ l2 ∈ Λ2(V ∗). Then

(ι(u)(l1 ∧ l2))(v) = (l1 ∧ l2)(u, v)
= (l1 ∧ l2)(u ∧ v)
= l1(u)l2(v)− l1(v)l2(u)

= l1(u)l2(v)− l1(v)l2(u)

That is, ι(u)(l1 ∧ l2) = l1(u)l2 − l2(u)l1.

Now for the following lemma, which will tell us exactly how to calculate
contractions.

Lemma 6.9.
If l1, . . . , lk ∈ V ∗, u ∈ V , then

ι(u)(l1 ∧ . . . ∧ lk) =
k∑
j=1

(−1)j−1(ι(u)lj)(l1 ∧ . . . ∧ l̂j ∧ . . . ∧ lk).

Proof.

(ι(u)l1 ∧ . . . ∧ lk)(v1, . . . , vk−1) = det


l1(u) l1(v1) . . . l1(vk−1)
· ·
· ·

lk(u) lk(v1) . . . lk(vk−1)


=

k∑
j=1

(−1)j−1lj(u) det

=
k∑
j=1

(−1)j−1lj(u)(l1 ∧ . . . ∧ l̂j ∧ . . . ∧ lk(v1, . . . , vk−1))
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Corollary 6.9.1.
If α ∈ Λr(V ∗), β ∈ Λs(V ∗), u ∈ V , then

ι(α ∧ β) = (ι(u)α) ∧ β + (−1)rα ∧ (ι(u)β).

Proof. It’s enough to consider α = l1 ∧ . . . ∧ lr, β = lr+1 ∧ . . . ∧ lr+s. This
we leave to the reader.

Now let’s do another example, this time using forms and vector fields.
The point of contracting forms and vector fields is, analogous to what we
defined above, ι(X) : Ωk(M) → Ωk−1(M). To calculate a contraction in this
case, we simply make use of the previous lemma. Let’s see an explicit case
of how this works.

Example 6.10.
Let W be the vector field on R3 given by x ∂

∂x + y ∂
∂y + z ∂

∂z , and let ω =
dx ∧ dy ∧ dz, the volume form on R3. Then

ι(W )ω = ι(ω)dx ∧ dy ∧ dz
= dx(ω)dy ∧ dz − dy(ω)dx ∧ dz + dz(ω)dx ∧ dy
= xdx ∧ dy − ydy ∧ dz + zdx ∧ dy

Thus, the only thing we need to know to compute contractions (locally,
at least) is to remember how functionals dxi act on vector fields and to follow
the “alternating rule” for computing contractions outlined in the previous
lemma.

6.4 Lie Derivatives of Forms

Finally, we come to Lie derivatives, the final piece of machinery that we’ll
need to begin discussing de Rham cohomology.

Definition 6.11.
Let X be a vector field on M , ω ∈ Ωk(M). Let φt denote the local flow of
X. The Lie derivative of ω with respect to X is

(LXω)q =
d

dt

∣∣∣
t
(φ∗tω)q.
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As with Lie derivatives of vector fields, there is an explicit formula for
calculating Lie derivatives of forms, known as Cartan’s formula. Before
we state and prove this formula, we need to establish a couple of lemmas.
Before we move on to state these lemmas, however, let’s figure out what
LXf should be, where f ∈ C∞(M).

(LXf)q =
d

dt

∣∣∣
t=0

(φ∗t f)q

=
d

dt

∣∣∣
t=0

(f ◦ φt)(q)

= X(f)(q) =
= dfq(X(q))
= (ι(X) df)q

Now for the first lemma.

Lemma 6.12.
Let X be a vector field on M . LX is a derivation on Ω(M) which commutes
with d.

Proof. First, we need to unravel the statement of the theorem. There are
three things we need to prove:
1) LX is R-linear.
2) LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη)
3) LX(dω) = d(LXω).
(1) is immediate since pull-backs and differentiation are linear, so let’s look
at (2).

d

dt

∣∣∣
t=0

(φ∗t (ω ∧ η) =
d

dt

∣∣∣
t=0

(φ∗tω) ∧ (φ∗t η).

As ∧ is bilinear,

d

dt

∣∣∣
t=0

(φ∗tω) ∧ (φ∗t η) =
d

dt

∣∣∣
t=0

(φ∗tω) ∧ (φ∗0η) + (φ∗0ω)
d

dt

∣∣∣
t=0

(φ∗t η)

= (LXω) ∧ η + ω ∧ (LXη).

One can also check that this statement is true in coordinates.
Now for (3).

LX(dω) =
d

dt

∣∣∣
t=0

(φ∗t (dω))

=
d

dt

∣∣∣
t=0

d(φ∗ω)

60



= d(
d

dt

∣∣∣
t=0

φ∗tω)

= d(LXω).

Lemma 6.13. Let X be a vector field on M , Q = d ◦ ι(X)+ ι(X) ◦d. Then
Q is a derivation on Ωk(M) that commutes with d.

Proof.

Q ◦ d = d ι(X) d+ ι(X) d d
= d ι(X) d
= d d ι(X) + d ι(X) d
= d ◦Q

Thus, Q and d commute. Now we need to check that Q is a derivation.
Accordingly, let ω ∈ Ωk(M), η ∈ Ωl(M). Then

Q(ω ∧ η) = d(ι(X)(ω ∧ η)) + ι(X)(d(ω ∧ η))
= d((ι(X)ω) ∧ η + (−1)kω ∧ (ι(X)η)) + ι(X)((dω) ∧ η + (−1)kω ∧ (dη)).
= d(ι(X)ω) ∧ η + ω ∧ d(ι(X)η) + (ι(X)dω) ∧ η + ω ∧ (ι(X)dη)
= Q(ω) ∧ η + ω ∧Q(η)

The next theorem gives us an explicit way to calculate Lie derivatives of
forms utilizing contractions and exterior differentiation.

Theorem 6.14. Cartan’s Formula
Suppose that X is a vector field on M and ω ∈ Ω(M). Then we have
Cartan’s Formula :

LXω = d(ι(X)ω) + ι(X)dω.

Proof. It’s enough to prove

(LXω)
∣∣∣
U

= (dι(X)ω + ι(X)dω)
∣∣∣
U

for any coordinate chart U . Thus, we may further assume that ω = aIdxI =
aIdxi1 ∧ . . . ∧ dxin . Both LX and Q = dι(X) + ι(X)d are derivations that
commute with d, so it’s enough to prove the above equation for functions,
which we did.
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Exercise 6.1.
Give examples of non-zero 2-forms ω and µ on R4 such that ω ∧ ω = 0 and
µ ∧ µ 6= 0.

Exercise 6.2.
Consider polar coordinates (r, θ) on R2. The “function” θ is defined up to
a constant. Show that dθ is a well-defined 1-form on R2 − {0} and that

dθ =
1

x2 + y2
(x dy − y dx).

Exercise 6.3.
(1) Let ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2. Compute dω.
(2) Compute

ι(
3∑
i=1

xi
∂

∂xi
)dx1 ∧ dx2 ∧ dx3.

(3) Compute LX(dx1 ∧ dx2 ∧ dx3), where X =
∑3

i=1 xi
∂
∂xi

.

Exercise 6.4.
Consider k : R2 → R2 given by (u, v) 7→ (u2 + 1, uv). Compute k∗((xy −
y)dx ∧ dy).

Exercise 6.5.
Let X and Y be vector fields and α a 1-form on a manifold M . Prove that
1) LX(ι(Y )α) = (LXα) + α(LXY ).
2) Using (1), show that dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]).

Exercise 6.6.
On R3, consider the 2-form

α = ydx ∧ dz + sin (xy)dx ∧ dy + exdy ∧ dz,

and let
X = z

∂

∂y
.

Compute dα, ι(X)α and LXα.

Exercise 6.7.
For any vector field X and any one form ω, define a 1-form by the Leibniz
type-rule by

X(ω(Y )) = (LXω)(Y ) + ω([X,Y ]).

From this definition, deduce Cartan’s formula.
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6.5 de Rham Cohomology

Introduction

Now we’re ready to talk about de Rham cohomology. First, we introduce
the following definitions.

Definition 6.15. Closed and Exact Forms
ω ∈ Ωk(M) is closed if it satisfies the differential equation dω = 0.
ω ∈ Ωk(M) is exact it satisfies the differential equation if ω = dη for some
η ∈ Ωk−1(M).

Note that since d2 = 0, every exact form is closed, but the converse
need not be true. To some extent, de Rham cohomology is a measure of the
extent to which every closed form is exact.
Since d2 = 0, we have that

Im{d : Ωk(M) → Ωk+1(M)} ⊂ ker {d : Ωk+1(M) → Ωk+2(M)}.

Thus, it makes sense to consider

Hk(M) = ker {d : Ωk+1(M) → Ωk+2(M)}/Im{d : Ωk(M) → Ωk+1(M)};

that is, it makes sense to consider the collection of closed k-forms modulo
the collection of exact k-forms on a manifold. These are the de Rham
Cohomology groups. Note that, in fact, these are groups since closed
forms and exact forms both form vector spaces over R.

Definition 6.16. de Rham Cohomology
Define Hk(M) to be the closed k-forms modulo the exact k-forms. The
groups Hk(M) are called the de Rham Cohomology groups of M.

Now, let’s make a couple of observations:
First, H0 = {f ∈ Ω0(M) : df = 0} is the collection of locally constant
functions. Thus, if M is connected, we have immediately that Hk(M) ' R.
Generally, we have that H0(M) is a direct product of copies of R, one
for each connected component of M . Next, we can see immediately that
Hn(M) = {0} if n > dimM.

de Rham Cohomology as a Ring

Proposition 6.17.
The space of closed forms forms a ring, where the multiplication is given by
the wedge product. The space of exact forms is an ideal in that ring.
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Proof. Since wedge product is associated, we need only show that the wedge
product of two closed forms is closed. Thus, let ω and µ be two closed forms;
then

d(ω ∧ µ) = dω ∧ µ+ (−1)kω ∧ dµ = 0.

Now, to show that the space of exact forms is a subring, we’ll prove that
the wedge of two exact forms is exact; the other necessary properties are
immediate. Thus, let dη = µ and dω = ν Then

ν ∧ µ = d(ω ∧ µ).

Finally, suppose that ω is a closed form and that µ = dη. Then ω ∧ µ is
exact:

ω ∧ µ = d(ω ∧ η).
Similarly, we see that µ ∧ ω is exact. Therefore, the exact forms are a
two-sided ideal in the ring of closed forms with the multiplicative structure
induced by the wedge product.

Corollary 6.17.1.
de Rham cohomology is a ring under wedge product.

Actually, we can say even more: de Rham cohomology is a graded R-
algebra.

de Rham Cohomology as a Functor

Now suppose that f : M → N is smooth, ω ∈ Ωk(N) is closed and µ ∈
Ωk(M) is exact. Then the fact that f∗ commutes with d means that f∗(ω)
is closed on M and f∗(µ) is exact on M . That is, f∗ induces an R-linear
map

f∗ : Hk(N) → Hk(M).

This hints at the following proposition:

Proposition 6.18.
The kth de Rham cohomology is a contravariant functor from the category
of differentiable manifolds to the category of real vector spaces.

Proof. Let T be the map that takes M to Hk(M) and a smooth map f :
M → N to its pull-back f∗. Then we know that f∗ is a linear map from
Hk(N) to Hk(M). Furthermore, it is easy to see that T (1M ) = 1Hk(M).
Finally, if f : M → N and g : N → Q are smooth maps, then T (fg) =
(fg)∗ : Hk(Q) → Hk(M); since (fg)∗ = g∗f∗, however, it follows that
T (fg) = g∗f∗.
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Corollary 6.18.1.
If f : M → N is a diffeomorphism, then f∗ : Hk(N) → Hk(M) is an
isomorphism.

Calculating Cohomology Groups for Rn

Now we’ll calculate de Rham cohomology groups for Rn. The next theorem
asserts that the cohomology groups in this case are very simple. Here’s
where we’ll use Lie derivatives and contractions.

Theorem 6.19. Poincare Lemma
Let BR(0) ⊂ Rn be a ball of radius R centered at the origin. Then Hk(BR(0)) =
{0} for k > 0. In particular, this says that every closed form is exact in Rn.

Proof. Let M = BR(0). We will construct hk : Ωk(M) → Ωk−1, k ≥ 1, such
that

hk+1 ◦ d+ d ◦ hk = idΩk(M).

Then if ω ∈ Ωk(M) and dω = 0, we’ll have

ω = (hk+1 ◦ d+ d ◦ hk)ω = d(hk ◦ ω);

i.e., every closed form is exact. So if we construct these maps, we’re done.
Visually, we want

Ω0(M) d // Ω1(M)
h1

zzttttttttt

d // Ω2(M)
h2

zzttttttttt

d // . . .

Ω0(M) d // Ω1(M) d // Ω2(M) d // . . .

Thus, we turn to the construction of hk. First, define a linear map αk :
Ωk(M) → Ωk(M) by

αk(adxI) = (
∫ 1

0
a(tx)tk−1dt)dxI .

Let X =
∑
xi

∂
∂xi

. We now have the following claims.
Claim I: αk ◦ LX = idΩk(M).
Claim II: αk ◦ d = d ◦ αk−1.
For a moment, let us assume that these two claims are true. Then

idΩk(M) = αk ◦ LX
= αk ◦ (ι(X) ◦ d+ d ◦ ι(X))
= (αk ◦ ι(X)) ◦ d+ d ◦ (αk−1 ◦ ι(X))
= hk+1 + hk.
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Therefore, if we establish the two claims, we’re done.
Claim I:
Fix a ∈ C∞(M). Then

LX(a) = (
∑
i

xi
∂

∂xi
)(a) =

∑
i

xi
∂a

∂xi
.

In addition,

LX(dxj) = d(LXxj) = d(
∑
i

(xi
∂

∂xi
)(xj)) = dxj .

Thus,

LX(adxI) = LX(adxi1 ∧ . . . ∧ dxik
= LX(a)dxI + a(LXdxi1) ∧ . . . ∧ dxin + . . .+ adxi1 ∧ . . . ∧ (LXdxin)

= (
∑
i

xi
∂a

∂xi
+ ka)dxI .

Therefore,

αk(LX(adxI)) = (
∫ 1

0
tk−1(

∑
i

txi
∂a

∂xi
(tx) + ka(tx))dt)dxI .

But the integrand here is just

tk(
∑
i

txi
∂a

∂xi
+ ka)(tx) =

d

dt
(tka(tx)).

Thus, ∫ 1

0

d

dt
(tka(tx))dt = tk · a(tx)

∣∣∣1
0

= ax− 0.

Thus, αk ◦ LX = idΩk(M).
Claim II: Note that

αk(d(a · dxI)) = αk(
∑
i

∂a

∂xi
dxi ∧ dxI

=
∑
i

(
∫ 1

0
tk
∂a

∂xi
(tx)dt)dxi ∧ dxI
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Thus,

d(αk−1(adxI)) = d(
∫ 1

0
tk−2a(tx)dt)dxI

=
∑
i

∂

∂xi
(
∫ 1

0
tk−2a(tx)dt)dxi ∧ dxI

=
∑
i

(
∫ 1

0
tk−2t

∂

∂a
xi(tx)dt)dxI

We will also calculate the cohomology groups for S1 after we have defined
integration of forms.

Exercise 6.8.
In R3, the standard inner product defines an isomorphism (R3)∗ ' R3, which
in turn induces an isomorphism of vector spaces A : Γ(TR3) → Ω1(R3). The
standard volume form µ = dx1 ∧ dx2 ∧ dx3 defines an isomorphism R3 7→
Λ2((R3)∗) by v 7→ ι(v)µ, which also induces an isomorphism B : Γ(TR3) 7→
Ω2(R3) given by B(X) = ι(X)µ. Finally, the map C : C∞(R3) → Ω3(R3)
given by C(f) = fµ is also an isomorphism. (Check these facts!)
(a) Show that the standard vector calculus notions of div, grad, and curl
can be defined as
• grad(f) = A−1(df).
• curl(f) = B−1(d(A(f))).
• div(f) = C−1(d(B(f))).

(b) Prove that in R3,
• curl(f) = 0 if and only if f = grad(f) for some f ∈ C∞(R3)
• div(f) = 0 if and only if f = curl(g) for some g ∈ Γ(TR3)

Exercise 6.9.
Let R3 be standard global coordinates on R3. Consider the 2-form

ωc = y · dx ∧ dz + (−c)x · dy ∧ dz,

where c ∈ R. Determine all values of c for which there is a form η such that
dη = ωc.
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7 Integration of Differential Forms

Now we discuss integration of forms on manifolds. This is a natural gener-
alization of our vector calculus notions of integration, and we’ll especially
be interested in Stokes’s Theorem, which will generalize Green’s Theorem in
the plane and the divergence theorem (a.k.a. Gauss’s Theorem). Our first
task, however, will be to define integration of forms on arbitrary manifolds
and to prove that, under certain conditions, integration is well-defined linear
map from the collection of forms to the real line.

7.1 Integration of Differential Forms

Definition 7.1.
Let Ωn

C(M) denote the collection of compactly supported n-forms on M .
Similarly, we denote the collection of compactly supported smooth functions
by C∞C (M).

If ω ∈ Ωn
C(Rn), then ω = a(x)dx1 ∧ · · · ∧ dxn for some a ∈ C∞C (Rn). We

define ∫
Rn

ω =
∫

Rn

a(x).

Note that the definition does indeed make sense since a(x) is compactly
supported (i.e., the integral is finite).
Next, recall from advanced calculus that if U ⊂ Rn is open, f ∈ C∞C (M),
and f : V → U is a diffeomorphism, then∫

V
(f ◦ F )(y) · |det dF (y)|dy =

∫
U=F [V ]

f(x)dx (1)

This is merely the generalization of u-substitution (i.e., change of variables)
to multivariable calculus.
Now, suppose additionally that det dF (y) > 0 for all y. Then (1) can be
expressed as follows:∫

V
(f ◦ F ) · det |dF (y)|dy =

∫
V

(F ∗f)(det dF (y))dy1 ∧ . . . ∧ dyn

=
∫
V
F ∗(fdx1 ∧ . . . ∧ dxn).

This gives the change of variables formula for forms:∫
V
F ∗ω =

∫
F [V ]

ω,
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where F : V → F [V ] is a diffeomorphism, ω is compactly supported, and
det dF (y) > 0 for all y ∈ V .

For this formula to make sense, however, we must be able to ensure
that det dF (y) > 0. The problem is that, while we may be able to do this
within a single coordinate chart, the support of ω might lie across several
coordinate charts, and there is no guarantee that the sign of the determinant
will be preserved from one coordinate chart to another. Thus, we make the
following definition.

Definition 7.2. Orientability
A manifold M is orientable if there is an atlas {(Uα, φα)} such that for all
α and β with Uα ∩ Uβ 6= ∅,

det(d(φβ ◦ φ−1
α )) > 0.

The choice of such an atlas is an orientation, and an oriented manifold
is a manifold together with an orientation.

Example 7.3.
Rn with the identity map as a chart is an oriented manifold.

Example 7.4.
The Mobius band is non-orientable. A proof is outlined in Rudin’s under-
graduate analysis book.

As it turns out, orientable is the condition we need to make the following
important theorem go through:

Theorem 7.5.
Let M be an oriented n-dimensional manifold. There exists a unique linear
map (integration)

∫
M : Ωn

C(M) → R, given by

ω 7→
∫
M
ω,

such that if (U, φ) is a coordinate chart and ω ∈ Ωn
C(U), then∫

M
ω =

∫
φ(U)

(φ−1)∗ω =
∫

Rn

(φ−1)∗ω.
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Proof. We need to check that integration of forms is well-defined and unique,
since linearity follows from familiar properties of the Riemann (or Lebesgue)
integrals from calculus. We do this in two steps.
Step I: First, we check that if the support of ω is in U and (U, φ), (U,ψ)
are two different charts defining the same orientation, then∫

Rn

(φ−1)∗ω =
∫

Rn

(ψ−1)∗ω.

Hence
∫
M ω will be well-defined (locally) and will be automatically unique.

Now, φ−1 = ψ−1 ◦ (ψ ◦ φ−1), so

(ψ−1)∗ω = (ψ−1 ◦ (ψ ◦ φ−1))∗ω
= (ψ ◦ φ−1)∗((ψ−1)∗ω)

Then by (1), we have∫
φ[U ]

(φ−1)∗ω =
∫
φ[U ]

(ψ ◦ φ−1)∗((ψ−1)∗ω)

=
∫
ψ[U ]

(ψ−1)∗ω.

Step II: Now we do the general case. Here, the proof relies on tha fact that
partitions of unity exist. Thus, let ω be an arbitrary compactly supported
form on M . Let {(Uα, φα)} be an atlas on M giving it its orientation.
Furthermore, let {pα} be a parition of unity subordinate to {Uα}. Note that
since supp(ω) is compact, pα 6= 0 for only finitely many α. Now define:∫

M
ω =

∑
α

∫
φα[Uα]

(φ−1
α )∗(pαω)

=
∑
α

∫
M
pαω.

Now, note that since pα 6= 0 for only finitely many α, we do not need to
justify interchanging the summation and the integral. Thus, we need to show
only that

∫
M ω does not depend on the choice of atlas or on the choice of

the partition of unity. Accordingly, suppose that {(Vβ , ψβ)} is another atlas
giving M its orientation and that {τβ} is a partition of unity subordinate
to {Vβ}. By step 1,∫

ψβ [Uα∩Vβ ]
(ψ−1

β )∗(τβpαω) =
∫
φα[Uα∩Vβ ]

(φ−1
α )∗(τβpαω).

70



Therefore,∑
α

∫
φα[Uα]

(φ−1
α )∗(pαω) =

∑
α,β

∫
φα[Uα]

(φ−1
α )∗(pατβω)

=
∑
α,β

∫
φα[Uα∩Vβ ]

(φ−1
α )∗(pατβω)

=
∑
α,β

∫
ψβ [Uα∩Vβ ]

(ψ−1
β )∗(pατβω)

=
∑
β

∫
ψβ [Vβ ]

(ψ−1
β )∗(τβω)

Thus, we see that ∫
M
ω

is well-defined.

Example 7.6.
Suppose that M = S1. Let θ be a coordinate chart on M ; note that this is
a homeomorphism from S1 − {(1, 0)} to (0, 2π). Then∫

S1

sin θ dθ =
∫ 2π

0
sin θ dθ.

If M is a manifold of dimension m, then a top form on M (or volume
form ) is an m-form. Here is an equivalent condition for being orientable.

Proposition 7.7.
An n-dimensional manifold is orientable if and only if there is a non-vanishing
top form on M .

Proof. Let {(Uα, φα)} be an atlas giving M an orientation. Assume further
that all Uα are connected, and let {pα} be a partition of unity subordinate
to {Uα}. Define

ν =
∑
α

pα(φ∗α(dx1 ∧ . . . ∧ dxn)).
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We claim that νx 6= 0 for all x ∈M . To see this, fix x ∈M . Then pα(x) 6= 0
for finitely many α, say α1, . . . αk. Then

(φ−1
α1

)∗ν =
k∑
i=1

(φ−1
α1

)∗pαiφ
∗
αi

(dx1 ∧ . . . ∧ dxn)

=
k∑
i=1

(pαi ◦ φ−1
α1

)[(φαi ◦ φ−1
α1

)∗(dx1 ∧ . . . ∧ dxn)]

=
k∑
i=1

(pαi ◦ φ−1
α1

)[det d(φαi ◦ φ−1
α1

)]dx1 ∧ . . . ∧ dxn

6= 0

since the determinants are always positive at x.
Now assume that ν is a non-vanishing top form. We want to produce an
atlas with “positive” transition maps. So let {Uα, φα} be an atlas on M .
Then (φ−1

α )∗ν = fα(x)dx1 ∧ . . . ∧ dxn, for some fα, and the fact that ν
is non-vanishing means that fα 6= 0. Thus, since Uα is connected, either
fα(x) > 0 ∀x ∈ Uα or fα(x) < 0 ∀x ∈ Uα. If fα(x) > 0, keep φα; otherwise,
replace it with T ◦ φα, where T : Rn → Rn is given by (x1, . . . , xn) 7→
(−x1, x2, . . . , xn).

Exercise 7.1.
Suppose thatM and N are orientable manifolds. Must it be true thatM×N
is orientable? Give a proof or a counterexample.

Exercise 7.2.
Show that TM is always orientable, regardless of whether or not M is.

Exercise 7.3.
(a) If µ ∈ Λn((Rn)∗), prove that the map ψ : Rn 7→ Λn−1(Rn) is an isomor-
phism.
(b) Suppose f : Rn → R is smooth and that a is a regular value of f .
Show that f1(a) is an orientable manifold and that ι(∇f) gives f−1(a) an
orientation. Here, of course, ∇f =

∑
i
∂f
∂xi

∂
∂xi
.

7.2 Stokes’s Theorem

Definition 7.8. Regular Domain
LetM be a manifold of dimension n (without boundary). A subsetD ⊂M is
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a regular domain (or alternatively, a domain with smooth boundary)
if for all p ∈ D, there is a coordinate chart (U, φ = (x1, . . . , xn)) such that

φ(U ∩D) = φ(U) ∩ {x ∈ Rn : x1 ≤ 0}.

Here, φ is said to be a chart adapted to D.

Example 7.9.
M = R2, D is the unit disk. Then φ(x1, x2) = (x1−

√
1− x2

2, x2) works.

Lemma 7.10.
Let D be a regular domain in M . Then ∂D is a submanifold of M that has
codimension 1.

Proof. Suppose that (φ,U) and (ψ, V ) are two charts adapted to D. Then
ψ◦φ−1 : φ[U∩V ] → ψ[U∩V ] sends φ[U∩V ]∩{x1 ≤ 0} to ψ[U∩V ]∩{x1 ≤ 0}.
This restricts to a diffeomorphism φ[U ∩ V ] ∩ {x1 = 0} → ψ[U ∩ V ] ∩
{x1 = 0} since in particular, it must map topological boundary to topological
boundary.

A couple of remarks:
First, note that

d(ψ ◦ φ−1)(0, x2, . . . , xn) =


a 0 . . . 0
...
... d(ψ ◦ φ−1)

∣∣∣
{0}×Rn−1

...


where a(x2, . . . , xn−1) ∈ C∞(Rn−1) and a > 0.
Next, note that if (φ,U) and (ψ, V ) are two charts adapted to D and
det d(φ ◦ ψ−1) > 0, then det d(φ ◦ ψ−1)

∣∣∣
{0}×Rn−1

> 0. Thus, if M is ori-

entable, so is D.
In light of the previous fact, a natural question to ask is: Given an orienta-
tion of M , how do we orient ∂D? The following proposition will take care
of this problem.

Proposition 7.11.
Let D be a regular domain of M and µ a non-vanishing top form. Then there
is a vector field N defined on M near ∂D which points out of D. Moreover,

ν = (ι(N)µ)
∣∣∣
∂D

is an orientation on ∂D.
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Proof. We prove this fact in two steps.
Claim I: There is a vector field N defined on M near ∂D that points out
of D.
If D = {x ∈ Rn : x1 ≤ 0}, take N = ∂

∂x1
. In general, cover D by adapted

charts{(Ui, φi}. On each Ui, there is Ni ∈ Γ(TUi) such that Ni points
outward. PIck a partition of unity subordinate to {Ui}, and let N =

∑
piUi.

Now, if M is orientable, then there is a non-vanishing top form µ. Define

ν = (ι(N)µ)
∣∣∣
∂D
.

Claim II: νx 6= 0 for all x ∈ ∂D.
In adapted coordinates,

µ = f(x1, . . . , xn)dx1 ∧ . . . ∧ dxn, f 6= 0

N = N1
∂

∂x1
+ · · ·+Nn

∂

∂xn

Then

ι(N)µ
∣∣∣
x1=0

= N1fdx2 ∧ . . . ∧ dxn

=
n∑
j=2

(−1)jfNjdx1 ∧ . . . ∧ ˆdxj ∧ . . . ∧ dxn
∣∣∣
x1=0

= (N1f)
∣∣∣
x1=0

dx2 ∧ . . . ∧ dxn.

Now we’re ready to discuss Stokes’s Theorem.

Theorem 7.12. Stokes’s Theorem
Let M be an oriented n-dimensional manifold, D ∈ M a domain, and ω ∈
Ωn−1
C (M). Then ∫

int(D)
dω =

∫
∂D

ω.

Proof. First, consider the case that M = Rn and D = {x : x1 ≤ 0}. Now,
µ = dx1∧ . . .∧dxn is an orientation on M . Let N = ∂

∂x1
so that ι(N)µ

∣∣∣
∂D

=

dx2 ∧ . . . ∧ dxn. Let ω ∈ Ωn−1
c (Rn). Then

ω =
∑
j

(−1)j−1fjdx1 ∧ . . . ∧ ˆdxj ∧ . . . ∧ dxn.
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So
dω =

∑
j

(−1)j−1 ∂f

∂xj
dxj ∧ dx1 ∧ . . . ∧ ˆdxj ∧ . . . ∧ dxn

=
∑
j

∂fj
∂xj

dx1 ∧ . . . ∧ dxn.

Now, ∫
D
dω =

∑
j

∫
{x1≤0}

∂f

∂xj
dx1 ∧ . . . ∧ dxn.

Since the support of fj is compact for all j, there is an R > 0 such that
supp(fj) ⊂ {x ∈ Rn : −R ≤ xj ≤ R}. Then if j > 1,∫

{x1<0}

∂f

∂xj
dxj =

∫ ∫
R

∂f

∂xj
dxj

=
∫

R
(
∫ R

−R

∂f

∂xj
dxj)

= 0.

For j = 1, we have∫
{x1<0}

∂f1

∂x1
dx1 =

∫ 0

−∞

∂f1

∂x1
dx1)dx2 . . . dxn

= f1(0, x2, . . . , xn).

Combining these results, we have∫
D
dω =

∫
{0}×Rn−1

f1(0, x2, . . . , xn) =
∫
∂D

ω
∣∣∣
∂D
.

Now let’s consider the general case. So let M be a manifold, and suppose
that ω ∈ Ωn−1

c (M). Suppose further that there is a coordinate chart (U, φ)
adapted to D with supp(dω) ⊂ U and∫

int(D)
dω =

∫
int(D)∩U

dω

=
∫
φ(int(D))

φ∗(dω)

=
∫
{x1<0}

d(φ∗ω)
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=
∫
{0}×Rn−1

φ∗ω
∣∣∣
{0}×Rn−1

=
∫
U∩∂D

φ∗ω
∣∣∣
φ(U∩∂D)

=
∫
U∩∂D

ω
∣∣∣
U∩∂D

=
∫
∂D

ω
∣∣∣
∂D
.

Finally, given ω as above, cover D by adapted charts {(Uα, φα)}. We may
assume that M = ∪αUα. Let {pα} be a partition of unity subordinate to
{Uα}. Then

∑
α pαω = ω and supp(pαω) ⊂ Uα. So∫

int(D)
dω =

∫
int(D)

∑
α

d(pαω)

=
∑
α

∫
int(D)

d(pαω)

=
∑
α

∫
∂D

pαω
∣∣∣
∂D

=
∫
∂D

∑
α

pαω
∣∣∣
∂D

=
∫
∂D

ω
∣∣∣
∂D
.

Stokes’s Theorem generalizes to boundaries that are smooth a.e.
As promised, we now compute the de Rham groups of S1.

Example 7.13. de Rham cohomology of S1

Since S1 is connected, we know already that H1(S1) = R. Furthermore,
since S1 has dimension 1, we know that Hk(S1) = {0} for k > 1. So the
only question is what happens when k = 1.
Now, dθ is not exact, for if it were, then its integral over S1 would be 0
(Stoke’s Theorem) rather than 2π. Also, note that all 1-forms on S1 are
closed. We claim that if α is a 1-form, then α−kdθ is exact for some k ∈ R.
For let α = f(θ)dθ, and set

k =
1
2π

∫
S1

α.
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Let

g(θ) =
∫ θ

0
(f(θ)− k)dθ.

Note that since g is 2π-periodic, it’s a well-defined C∞ function on S1, and
dg = (f(θ) − k)dθ = α − kdθ. Thus, every 1-form on S1 differs from a real
multiple of dθ by an exact form. Consequently, H1(S1) ' R.

Exercise 7.4.
Let M be an n-dimensional compact oriented manifold, D ⊂ M a domain
with smooth boundary, f ∈ C∞(M), and ω ∈ Ωn−1(M). Show that∫

D
f dω =

∫
∂D

fω −
∫
D
df ∧ ω.

Exercise 7.5.
Let M be an n-dimensional oriented manifold and µ ∈ Ωn(M) a nowhere
vanishing form. Show that for any vector field X on M , the Lie derivative
LXµ satisfies n-form

LXµ = fµ

for some f ∈ C∞(M). We define the divergence of X with respect to µ to
be this function f and denote it by divµ(X). Thus, LXµ = divµ(X). Show
that for M = Rn, µ = dx1 ∧ . . . ∧ dxn

divµ(
∑
i

vi
∂

∂xi
) =

∑
i

∂vi

∂xi
.

Show that if D ⊂M is a domain with smooth boundary then∫
D

divµ(X) =
∫
∂D

ι(X)µ

for any vector field X with compact support.

Exercise 7.6.
Let M be a compact, oriented n-manifold without boundary. Show that
Hn(M) 6= {0}.

Exercise 7.7.
Compute the integral of x dy − y dx over ∂D, where D is the unit disk in
R2.
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Exercise 7.8.
Evaluate

∫
S ω
∣∣∣
S

where S is the helicoid in R3 parameterized by φ(s, t) =

(s cos t, s sin t, t), 0 < s < 1, 0 < t < 4π, and ω = z dx ∧ dy + 3 dz ∧ dx −
x dy ∧ dz. Use the orientation of S defined by φ.

Exercise 7.9.
Supose that ω is any 1-form on S1 such that

∫
S1 ω = 1. Let f(θ) = sin 5θ+3θ.

Compute
∫
S1 f

∗ω.

Exercise 7.10.
Let S2 ⊂ R3 be the unit sphere. Let n be the north pole and

s : S2 r {n} → R2

be the stereographic projection. Let ω0 = dx∧dy be the standard area form
on R2.
(a) Choose a coordinate system on S2 and use it to compute s∗ω0.
Hint: With a clever choice of coordinates, computation is not necessary!
(b) Compute the integral of s∗ω0 over the lower hemisphere.
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8 Riemannian Geometry

8.1 Connections on Vector Bundles

If M is a manifold, then comparing tangent vectors from different fibers will
tell us something about the curvature of our manifold. Our initial goal in
defining connections is parallel transport: That is, if γ : [a, b] → M is
a curve on M , we want linear maps Pγ(t) : Eγ(a) → Eγ(b) such that Pγ(t)
depends smoothly on t. This will allow us to compare vectors from different
fibers. The key tool for us to define parallel transport is connections on
manifolds, but specifically, we talk about connections on vector bundles.
While vector fields define differential operators that act C∞(M) functions,
connections define a sort of derivative on vector fields (or sections of the
appropriate vector bundle).

Definition 8.1. Connection on a Vector Bundle
Let π : E → M be a vector bundle. A connection (or covariant deriva-
tive) is an R-bilinear map ∇ : Γ(TM)×Γ(E) → Γ(E), denoted by (X, s) 7→
∇Xs, such that for all f ∈ C∞(M), all X ∈ Γ(TM), and all s ∈ Γ(E),
(1) ∇fXs = f∇Xs
(2) ∇X(fs) = X(f) · s+ f∇Xs.

Let’s see an example of this.

Example 8.2.
Suppose that π : E → M is a trivial bundle of rank k. Then there exist
global sections {s1, . . . , sk} such that {sj(x)} is a basis for Ex, for all x ∈M .
So for any s ∈ Γ(E), we have s =

∑
j fjsj , for some C∞ functions fj . Let

us define
∇X(

∑
j

fjsj) =
∑
j

X(fj)sj .

Let’s check that this is indeed a connection on E. First,

∇gX(
∑
j

fjsj) =
∑
j

gX(fj)sj = g
∑
j

fjsj = g∇X(
∑
j

fjsj).

Next,

∇X(g
∑
j

fjsj) =
∑
j

X(gfj)sj

= X(g)
∑
j

fjsj + g
∑
j

X(fj)sj

= X(g)(
∑
j

sjfj) + g∇X(
∑
j

fjsj).
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Proposition 8.3.
Let ∇ be a connection on a vector bundle π : E → M . Then ∇ is local:
That is, for any open set U and any vector fields X and Y , and for any
sections s and s′ of E such that X

∣∣∣
U

= Y
∣∣∣
U

and s
∣∣∣
U

= s′
∣∣∣
U
, we have

(∇Xs)
∣∣∣
U

= (∇Y s
′)
∣∣∣
U
.

Proof. Since ∇ is bilinear, it is enough to show:
(a) If X

∣∣∣
U

= 0, then ∇Xs
∣∣∣
U

= 0 for any s ∈ Γ(E).

(b) If s
∣∣∣
U

= 0, then ∇Xs
∣∣∣
U

= 0 for any X ∈ Γ(TM).
Pick x0 ∈ U . Then there is an open set V ⊂ U , x0 ∈ V , and a function
ρ ∈ C∞C (U) such that ρ ≡ 1 on V . Then if X

∣∣∣U = 0, ρX ≡ 0, and hence for
any section s of E,

0 = (∇ρXs)(x0) = ρ(x0)(∇Xs)(x0) = (∇Xs)(x0).

As x0 ∈ U is arbitrary, (a) follows.
Now, if s

∣∣∣
U

= 0, ρs = 0 on M , which in turn implies that

0 = (∇Xρs)(x0)
= (X(ρ)s+ ρ∇Xs)(x0)
= 0 + ρ(x0)(∇Xs)(x0)
= (∇Xs)(x0).

Thus, if ∇ is a connection on E, then ∇ induces a connection ∇U on
E
∣∣∣
U
. Recall that given U ⊂ M and s ∈ Γ(E

∣∣∣
U
), for any x0 ∈ U , there

is s̃ ∈ Γ(E) such that s̃(x) = s(x) for x near x0. In particular, for any
X ∈ Γ(TU), there is X̃ ∈ Γ(TM) such that X(x) = X̃(x) for any x near
x0. By the previous proposition,

(∇U
Xs)(x) = (∇X̃ s̃)(x)

is a well-defined expression for all x sufficiently close to x0.
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Definition 8.4. Christoffel Symbols
Let U be an open subset ofM on which we have a coordinate chart (U, (x1, . . . , xn))
and on which E is trivial. Let {sα} be a frame of E on U . Then

∇ ∂
∂xi

sα =
∑
β

Γβiαsβ

for some functions Γβiα ∈ C∞(U). These functions are the Christoffel
symbols of the connection ∇ relative to (x1, . . . , xn) and {sα}.

A connection is uniquely determined by its Christoffel symbols, a fact
which we can deduce directly from the definitions.

Proposition 8.5.
Let ∇ be a connection on π : E → M . If X(x) = 0, then (∇Xs)(x) = 0.
Thus, (∇Xs)(x) depends only upon X(x).

Proof. Choose a coordinate chart (U, (x1, . . . , xn)) s.t. x0 ∈ U and E
∣∣∣
U

is

trivial. Pick a local frame {sj} of E
∣∣∣
U
. At this point, it is convenient to

use Einstein summation convention, where we omit summations but sum
whenever indices are repeated; i.e., aibi means

∑
i aibi. Now,

∇Xi ∂
∂xi

(fjsj) = Xi∇ ∂
∂xi

(fjsj)

= Xi∂fj
∂xi

sj +Xifj∇ ∂
∂xi

sj

= Xi(
∂fj
∂xi

sj + fjΓkijsk)

= Xi(
∂fj
∂xi

+ fαΓjiα)sj .

IfX(x0) = 0,Xi(x0) = 0 for all i, which means that (∇X(fjsj))(x0) = 0.

Here’s a useful expression which we’ve obtained as a result of the pre-
ceding proof:

Corollary 8.5.1.

∇∑
i X

i ∂
∂xi

(
∑
j

fjsj) =
∑
i,j

Xi(
∂fj
∂xi

+
∑
α

fjΓ
j
iα)sj .
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The next proposition will complete our “basic material” on connections.
It says that connections always exist, and as the reader should expect by
now, we’ll use the previous example from this section to construct connec-
tions on sufficiently small open sets (where the bundle is trivial), and then
we’ll add each of the connections together using a partition of unity.

Proposition 8.6.
Let π : E →M be a vector bundle. Then there is a connection on E.

Proof. Choose {Uα} on M such that E
∣∣∣
Uα

is trivial. Let ∇α be a connection

on E
∣∣∣
Uα

, as outlined in the previous example. Furthermore, let {pα} be a

partition of unity subordinate to {Uα}, and define

∇Xs =
∑
α

pα(∇α
X(s

∣∣∣
Uα

)).

That this is a connection now follows from the details of the previous exam-
ple, and the details are left to the reader.

8.2 Parallel Transport

Recall the goal of parallel transport: Let π : E → M be a vector bundle.
Then given a curve γ : [a, b] →M , we want linear maps

Pγ(t) : Eγ(a) → Eγ(t)

which depend smoothly on t.
How can we construct these maps? First note that if for every v ∈ Eγ(a), we
can find a global section sv ∈ Γ(E) such that sv(γ(a)) = v and (∇ ˙γ(t)

sv)(γ(t)) =
0, then we can define Pγ(t)(v) = sv(γ(t)). In some sense, this says that we
can find a section which is constant along ˙γ(t). Of course, global sections do
not exist in general; however, we can still parallel transport locally, as we
will see.

Example 8.7.
Let M = Rn, E = TM , Γ(E) = C∞(M,Rn). Let

∇XY = (X(Y1), . . . , X(Yn)).

Then we need

0 = ∇γ̇(t)Y = (
d

dt
Y1(γ(t)), . . . ,

d

dt
Yn(γ(t))),

which says that Y is constant along gamma.
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To define local parallel transport, we need the notion of the covariant
derivative along a curve. We now define the appropriate concepts.

Definition 8.8.
Let π : E →M be a vector bundle, γ : [a, b] →M a curve. σ : [a, b] → E is
a section of E along γ σ(t) ∈ Eγ(t) for all t ∈ [a, b].

Note that if s ∈ Γ(E), s ◦ γ is a section of E along γ. We denote the
collection of sections along γ by Γ(γ∗(E)).

Pull-back Bundles

Here’s another way to consider sections along a curve γ. Suppose f : N →M
is smooth and that π : E →M is a vector bundle. Define

f∗E = {(n, e) ∈ N × E : f(n) = π(e)}.

Exercise 8.1.
1. f∗E is a submanifold of N × E.
Hint: Surjectivity of df +dπ and a previous homework exercise on transver-
sality.
2. f∗E is a vector bundle.
Hint: Local sections of f∗E are given by {si ◦f}, where {si} is a local frame
for E.

What’s the big deal? Well, if σ is a section of a vector bundle E along
a curve γ, then σ is a section of γ∗E = {(t, e) : γ(t) = π(e)}. Conversely,
a section of γ∗E → [a, b] is of the form t 7→ (t, σ(t)), where π(σ(t)) = γ(t).
Thus, sections of γ∗E are sections of E along γ!
As a side note, if s ∈ Γ(E), then s ◦ γ ∈ Γ(γ∗E). However, this assignment
Γ(E) → Γ(γ∗E) need not be surjective (consider any curve that intersects
itself!)

Covariant Derivatives

Here’s the piece of machinery that will allow us to write a differential equa-
tion which more or less defines parallel transport locally.

Definition 8.9. Covariant Derivative
A covariant derivative ∇

dt along γ is an R-linear map ∇
dt : Γ(γ∗(E)) →

Γ(γ∗(E)) given by σ 7→ ∇
dtσ such that for all f ∈ C∞([a, b]),

∇
dt

(fσ) =
df

dt
σ + f

∇
dt
σ.
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Proposition 8.10.
Given a connection ∇ on π : E →M and a curve γ : [a, b] →M , there is a
unique covariant derivative ∇

dt : Γ(γ∗(E)) → Γ(γ∗(E)) along γ such that

∇
dt

(s ◦ γ)(t) = (∇ ˙γ(t)
s)(γ(t)). (2)

Proof. Uniqueness: Suppose that U ⊂ M , ∇
dt satsfies (2), and E

∣∣∣
U

is

trivial. Pick a frame {sj} of E
∣∣∣
U
, and let {s∗j} be the dual frame. Further

let I = γ−1(U). If s ∈ Γ(E), then s
∣∣∣
U

=
∑

j〈s∗j , s〉sj , which in turn implies

that if σ ∈ Γ(γ∗E
∣∣∣
I
), then

σ =
∑
j

〈s∗j ◦ γ, σ〉(sj ◦ γ) ⇒

∇
dt
σ =

∇
dt

(
∑
j

σj(sj ◦ γ))

Thus, ∑
j

dσj
dt
sj ◦ γ +

∑
j

σj(∇γ̇sj) ◦ γ, (3)

where σj ∈ C∞(I). Since all of these parameters are uniquely determined,
∇
dt must be unique.

Existence: Cover γ([a, b]) with sets Uj such that E
∣∣∣
Uj

is trivial. It’s enough

to construct ∇
dt on each Γ(γ∗E

∣∣∣
γ−1(Uj)

). By uniqueness, we then get ∇
dt on

all of Γ(γ∗E). Pick a frame {sjk} on E
∣∣∣
Uj

and define ∇
dt on γ∗E by (3). This

is a covariant derivative satisfying (2).

To define parallel transport along a curve γ : [a, b] → M , we want,
for every v ∈ Eγ(a), a section σv ∈ Γ(γ∗(E)) such that σv(a) = v and
∇
dtσ

v = 0. We also want the map v 7→ σv to be linear. Thus, we can
define parallel transport on γ if we compute (3) in coordinates. Suppose
that γ̇ =

∑
i(
d
dtγ

i) ∂
∂xi
, with γi = xi ◦ γ. Then if σ =

∑
σα(sα ◦ γ) in a

coordinate chart that trivializes E, 0 = ∇
dtσ amounts to

0 =
∇
dt
σ
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=
∑
j

dσj
dt

(sj ◦ γ) +
∑
i,j

σj γ̇i(∇ ∂
∂xi

sj) ◦ γ

⇒

0 =
∑
j

dσj
dt

(sj ◦ γ) +
∑
i,j,k

σj γ̇i(Γkijsj) ◦ γ,

and changing indices, we see that

dσα
dt

= −
∑
i,δ

σδγ̇i(Γαiδ ◦ γ).

In other words, ∇
dtσ = 0 amounts to

d

dt

 σ1

:
σk

 = B(t)
d

dt

 σ1

:
σk

 ,

where
Bjk = −

∑
i

γ̇i(Γjik ◦ γ).

These last two equations are two equivalent versions of the parallel trans-
port equation. We can turn this into a system of ODE’s and (in theory)
solve to get what the σα terms should be. Once we have the solution on
a coordinate chart, we can then piece solutions from different coordinate
charts together to get the result.
The relevant theorem is the following one:

Theorem 8.11.
Suppose that B : [c, d] →Mk(R) is a smooth curve in the space of k× k real
matrices. Then there is a map R : [c, d] → Mk(R) such that σ(t) = R(t)σ0

is a solution with inital conditions σ(c) = γ0.

8.3 Riemannian Manifolds

Let x ∈ M , where M is some manifold. Then TxM is a real vector space,
and as such, we can define an inner product on it in a number of ways. This
idea leads to the following concept.

Definition 8.12. Riemannian Metric
A Riemannian metric g on a manifold M assigns smoothly to each x ∈M
an inner product gx on TxM .
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Here, “smoothly” means that g is a section of the vector bundle of
symmetric bilinear maps from TM × TM → R and that the functions
gij = g( ∂

∂xi
, ∂
∂xj

) are smooth on the coordinate chart (U, (x1, . . . , xn)).

Theorem 8.13.
Any manifold has a Riemannian metric.

Proof. Let {(Ui, φi = (xi1, . . . , x
i
n))} be a collection of coordinate charts that

cover M . Let {pi} be a partition of unity subordinate to this collection, and
define

g =
∑
i

pi(
∑
j

dxij ⊗ dxij).

Then g is a Riemannian metric. Symmetry and positive definiteness are
easy to verify, and smoothness follows from the smoothness of the p′is and
the fact that

∑
j dx

i
j ⊗ dxij is a nonvarying bilinear map on TUi.

Definition 8.14. Riemannian Manifold
A Riemannian manifold is a manifold M together with a Riemannian
metric g.

It turns out that on a Riemannian manifold, there is a special type
of connection. This connection is called the Levi-Civita connection or
sometimes the Riemannian connection.

Theorem 8.15. Levi-Civita Connection
On every Riemannian manifold (M, g) there is a unique connection ∇ :
Γ(TM)× Γ(TM) → Γ(TM) which is
(1) Torsion-free : ∇XY −∇YX = [X,Y ]
(2) Compatible with g : X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ)

Proof. Step I: Uniqueness
Suppose that ∇ exists. Then for any X,Y, Z ∈ Γ(TM),

2g(Z,∇YX) + g([X,Y ], Y ) + g([Y, Z], X) + g([X,Y ], Z)
= g(Z,∇YX) + g(Z,∇YX) + g(∇XZ, Y −∇ZX,Y )

+g(∇Y Z −∇ZY,X) + g(∇XY −∇YX,Z)
= (g(Z,∇ZX) + g(∇Y Z,X)) + (g(∇XZ, Y ) + g(∇Y Z,X))

−(g(∇ZX,Y ) + g(X,∇ZY ))
= Y (g(Z,X)) +X(g(Z, Y ))− Z(g(X,Y )).
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Thus, we have

g(Z,∇YX) =
1
2
(X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y ))− g([X,Z], Y )

−g([Y, Z], X)− g([X,Y ], Z)).

Since Z is arbitrary and g is nondegenerate, the formula above uniquely
determines ∇XY .
Step II : Existence : By uniqueness, it will be enough to construct ∇ in
a coordinate chart. To do this, we’ll compute Christoffel symbols for ∇ in
terms of gij = g( ∂

∂xi
, ∂
∂xj

) and ∂
∂xj

gij and then define ∇ in terms of these
Christoffel symbols. Finally, we will verify that the connection defined is
the Levi-Civita connection.
Before we begin, let us introduce two conventions. First, let ∂i denote ∂

∂xi
.

Next, we will use the Einstein summation convention (we omit
∑

symbols,
keeping in mind that we sum over repeated indices). For example, by Xi∂i,
we mean

∑
iXi∂i.

Since [∂i, ∂j ] = 0 always, we see that if ∇ is a Levi-Civita connection, then
by the equation for g(Z,∇XY ) above, we see that

g(∂k,∇∂i
∂j) =

1
2
(∂jgik + ∂igjk − ∂kgji).

On the other hand,
∇∂i

∂j = Γlij∂l,

so that
g(∂k,∇∂i

∂j) = Γlijg(∂k, ∂l) = Γlijgkl.

As gij is positive definite, it is nondegerate. Let (gkl) = (gij)−1. Hence,

gskgklΓlij =
1
2
gsk(∂jgik + ∂igjk − ∂kgij).

That is,

Γsij =
1
2
gsk(∂jgik + ∂igjk − ∂kgij).

Define ∇ in coordinates to be the connection whose Christoffel symbols
given by the previous equation. We need to check that this is the Levi-
Civita connection.
Since Γkij = Γkji,

∇∂i
∂j −∇∂j

∂i = Γkij∂k − Γkji∂k = 0.
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Thus, for two vector fields X = Xi∂i and Y = Y i∂i, we have

∇XY −∇YX = ∇Xi∂i
(Y jpj)

= Xi(∂iY j)∂j +XiY j∇∂i
∂j − Y j(∂jXi)∂i − Y jXi∇∂j

∂i

= Xi(∂iY j)∂j − Y j(∂jXi)∂i
= [Xi∂i, Y

j∂j ].

Thus, ∇ is torsion-free. Compatibility with g is a somewhat longer compu-
tation. First, note that

g(∇∂i
∂j , ∂k) + g(∂j ,∇∂i

∂k) = g(Γlij∂l, ∂k) + g(∂j ,Γmik∂m)

= Γlijglk + Γmikgjm
= ∂igjk,

where the last equality follows from our definition of the Christoffel symbols
for ∇. Thus, we have for vector fields X,Y, Z,

(Xj∂j)g(Y i∂i, Z
k∂k) = Xj∂j(Y iZkgik)

= Xj(∂jY i)Zkgik +XjY i(∂jZk)gik +XiY jZk(∂jgik)
= g(Xj(∂jY i)∂i, Zk∂k) + g(Y i∂i, X

j(∂jZk)∂k)
+XjY iZk(g(∇∂j

∂i, ∂k) + g(∂i,∇∂j
∂k))

= g((Xj∂j)Y i∂i, Z
k∂k) + g(Y i∇Xj∂j

∂i, Z
k∂k)

+g(Y i∂i, (Xj∂j)Zk∂k) + g(Y i∂i, Z
k∇Xj∂j

∂k)

= g(∇Xj∂j
(Y i∂i), Zk∂k) + g(Y i∂i,∇Xj∂j

(Zk∂k)).

That is, ∇ is compatible with g, and it follows that ∇ is the Levi-Civita
connection with respect to g.

Example 8.16.
Let Y be a vector field on R3. Define DXY =

∑
X(Y i) ∂

∂xi
. Then D is the

Levi-Civita connection on R3 (with respect to the standard inner product
on R3. We leave this check to the reader. We also let the reader verify that
the Levi-Civita connection on Rn is also characterized by the fact that all
of its Christoffel symbols are zero.

Exercise 8.2.
Suppose that γ : R → Rn is a curve. Show that D

dt γ̇ = γ̈.
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Exercise 8.3.
Suppose that (M, g) is a Riemannian manifold. Then g induces a bundle
isomorphism g# : TM → T ∗M by

(x, v) 7→ gx(v, ·).

A smooth map F : (M, gM ) → (N, gN ) is an isometry if F ∗gN = gM .
Here,

F ∗gMx (v, w) = gNF (x)(dFx(v), dFx(w)).

Exercise 8.4.
Show that isometries preserve the Riemannian connection. That is, if F :
(M, gM ) → (N, gN ) is an isometry and ∇M and ∇N are the respective
Levi-Civita connections, then

F ∗(∇M
X Y ) = ∇N

dF (X)dF (Y ).

Induced Connections

We now consider an important example of Levi-Civita connections; namely,
if we have an embedded submanifold of a larger manifold, how can we define
the Levi-Civita connection on this submanifold? In other words, if (M, gM )
is a Riemannian manifold and N is a closed submanifold, then the inclusion
induces a Riemannian metric on N by gN = ι∗gM . That is, if x ∈ N , we
can define gN on a pair of vectors (v, w) by

gNx (v, w) = gMι(x)(dι(v), dι(w)).

It is a fact, left to the reader to pursue, that gN is a Riemannian metric on
N .

Exercise 8.5.
If ι : N →M is an embedding and gM is a Riemannian metric on M , then
ι∗gM is a Riemannian metric on N .

Armed with these definitions, we can now consider the relationship be-
tween the two corresponding Levi-Civita connections ∇M and ∇N . (The
connection on N sometimes is called an induced connection). To begin,
we need a technical result.

Lemma 8.17.
Let N be a closed submanifold of a manifold M . Let X and Y be vector
fields on N , and let W and Z be extensions of them to M . Then for any
point x ∈ N , ∇M

WZ depends only on X and Y and not their extensions.
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Proof. ∇M
WZ depends only on W (x) = X(x) and on the values of Z along

the integral curve γ through x. As W is tangent to N , γ ⊂ N and Z(γ(t)) =
Y (γ(t)), for all t.

It is not true, however, that (∇M
WZ)(x) ∈ TxN . To see this, consider the

following example.

Example 8.18. Let W = Z = x2
∂
∂x1

− x1
∂
∂x2

, a vector field on R2 that
corresponds to a circular flow around the origin. If D represents the Levi-
Civita connection on R2, we have

DWZ = (W )(x2)
∂

∂x1
+ (W )(−x1)

∂

∂x2
= −x1

∂

∂x1
− x2

∂

∂x2
.

Take M = R2, N = S1. Then DWZ is orthogonal to S1 (it is the radial
vector field).

Now, for every x ∈ N , there is an orthogonal projection πx : TxM →
TxN ; that is, there is a vector bundle map π : TM

∣∣∣
N
→ TN . If (x1, . . . , xn, . . . , xm)

are coordinates for M near x0 ∈ N that are adapted to N , we may use the
Riemannian metric g to apply Gram-Schmidt to the basis vectors { ∂

∂x1
, . . . , ∂

∂xn
, . . . , ∂

∂xm
}

to obtain an orthonormal frame {e1(x), . . . , en(x), . . . , em(x)} on TU . Define

πx(v) =
n∑
i=1

gMx (v, ei(x))ei(x)

and define ∇ on N by

(∇XY )(x) = πx((∇M
X̃
Ỹ )(x)),

where X̃ and Ỹ are any extensions of X and Y .

Proposition 8.19.
∇ = ∇N , the Levi-Civita connection on N .

Proof. We show that ∇ preserves the metric; the other two properties are
somewhat straightforward and are left to the reader. Thus, we need to check
that

Z(gN (X,Y )) = gN (∇ZX,Y ) + gN (X,∇ZY )

for any vector fields X,Y, Z on N . At any point of N ,

Z(gN (X,Y )) = Z̃(gM (X̃, Ỹ ))
= gM (∇M

Z̃
X̃, Ỹ ) + gM (X̃,∇M

Z̃
Ỹ )

= gM (∇ZX + (∇M
Z̃
X̃ −∇ZX), Y ) + gM (X,∇ZY + (∇M

Z̃
Ỹ −∇ZY ))

= gM (∇ZX,Y ) + gM (X,∇ZY ).
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Here we tacitly used the definition of gN and the fact that TxN ⊂ TxM for
all x ∈ N .

Why are induced connections useful? Suppose, for example, that I want
to compute ∇

dt γ̇ for some curve in an embedded surface in R3, I can first
compute this quantity in R3 (which is just γ̈) and project the resulting
vector onto the tangent plane to my surface. That is, if D is the Levi-
Civita connection on R3, X and Y are vector fields on S, and W and Z are
respective extensions to R3, one can define a connection on S by

∇XY = DWZ − 〈DWZ, n〉n,

where n is the unit normal.

Exercise 8.6.
Consider the mapping π : (u, v) 7→ (cosu, sinu, v) which takes R2 to the
cylinder M = {(x, y, z) : x2 + y2 = 1}. Show that π is an isometry with
respect to the induced metric on M ; that is, that π∗gM = g, where g is the
standard metric on R2.

8.4 Curvature

Let ∇ be a connection on a vector bundle E → M . For X,Y ∈ Γ(TM),
s ∈ Γ(E), the curvature of ∇ is defined to be

K(X,Y )s = ∇X(∇Xs)−∇Y (∇Xs)−∇[X,Y ]s.

It is evident that this formula defines a multilinear mapping Γ(TM) ×
Γ(TM)× Γ(E) → Γ(E). At first, it is not clear what this definition means.
One motivation is as follows. It is a theorem of advanced calculus that
the second-order partial derivatives are independent of order. For functions
on manifolds and vector fields X and Y , the analogous property does not
hold, and in fact, [X,Y ]f = X(Y f)− Y (Xf) measures the extent to which
Y (Xf) = X(Y f). Since interchangeability of order of differentiation is
measured by an “interesting” object [X,Y ], one might ask if there is, by
analogy, an “interesting” object that measures similar properties for ∇X

and ∇Y derivatives of a vector field Z on a manifold M . Now, in general,
it is not the case that ∇X(∇Y Z) −∇Y (∇XZ) = 0; thus, this commutator
determines some nonzero vector field on M which may be thought of as
an analogue of [X,Y ]. Curvature is a variant of this expression which also
involves noninterchangeability of derivatives of [X,Y ].
Curvature is a primary topic of study in Riemannian geometry, and we will
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only briefly touch upon it here. Our main focus will be on the curvature of
the Levi-Civita connection and its implications to the curvature of surfaces
in R3. First, we derive a few preliminary properties.

Proposition 8.20.
For any x ∈M , X,Y ∈ Γ(TM) and s ∈ Γ(E), (K(X,Y )s)(x) depends only
upon X(x), Y (x), and s(x).

Proof. It suffices to check that K is C∞(M)-linear, in each of three slots.
Accordingly, let f ∈ C∞(M), X,Y ∈ Γ(TM), and s ∈ Γ(E). Then

K(X,Y )(fs) = ∇X(∇Y (fs))−∇Y (∇X(fs))−∇[X,Y ](fs)
= ∇X(Y (f)s+ f∇Y s)−∇Y (X(f)s− f∇Xs)− ([X,Y ]f)s− f∇[X,Y ]s

= X(Y (f))s+ Y (f)∇Xs+X(f)∇Y s+ f∇X(∇Y s)− Y (X(f))s
−X(f)∇Y s− Y (f)∇Xs− f∇X(∇Y s)− ([X,Y ]f)s− f∇[X,Y ]s

= fK(X,Y )s

That K(fX, Y )s = fK(X,Y )s and K(X, fY )s = f(X,Y )s are verified
similarly.

In other words, K(X,Y ) is tensorial. Note that for each x ∈ M , we
have a trilinear map

Kx : TxM × TxM × Ex → Ex

that is skew-symmetric in X and Y . Now we consider a special case, the
curvature of the Levi-Civita connection.

Definition 8.21.
If (M, g) is a Riemannian manifold and ∇g is the correpsonding Levi-Civita
connection, then the corresponding curvature R is called the Riemannian
curvature tensor.

Specifically, we want to consider the case that we have an embedded
surface S ⊂ R3. For any x0 ∈ S, we have a neighborhood U ⊂ S and a
vector field n : U → R3 such that

(1) n(x)⊥TxS
(2) ||n(x)|| = 1

Of course, if S is locally the graph of some function f : R2 → R, then n(x)
is merely the gradient vector field obtained by

(x0, y0) →
(∂f
∂x

(x0),
∂f

∂y
(y0), 1

)
.
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Also, note that n : U → S2, the two sphere, and that dnx : TxS → Tn(x)S
2 '

TxS; these tangent spaces may be identified since both are perpendicular to
the unit normal. The map n is commonly known as the Weingarten map.

Definition 8.22. Gauss Curvature
det dnx = k(x) is the Gauss curvature of S at x.

One nice fact to know is that k(x) is independent of choice of n; this is
part of the content of the next theorem.

Theorem 8.23.
Let S ⊂ R3 be an embedded surface. Then for any orthonormal basis e1, e2
of TxS,

gSx (RSx (e1, e2)e1, e2) = k(x).

That is, k is dependent only upon the induced metric gS.

Let us see a couple of examples of the Gauss curvature.

Example 8.24.
Consider

S = {(x1, x2, x3) ∈ R3 : x3 = 0}.

Here the condition that x3 = 0 forces the vector field n(x) to be constant,
and so k(x) is 0.

Example 8.25.

S = {(x1, x2, x3) ∈ R3 : x2
2 + x2

3 = R2},

a cylinder. Here, n(x) is constant in the x1 direction. Hence, dnx(e1) = 0,
and so k(x) = 0.

Example 8.26.

S = {(x1, x2, x3) : x2
1 + x2

2 + x2
3 = R2},

a sphere. Then n(x) = 1
R , so that

dn =
1
R
· id.

Thus,

k(x) =
1
R2

.
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Example 8.27.

S = {(x1, x2, x3) : x3 = x2
1 − x2

2},

a hyperboloid. Then

dn(0,0,0) =
(
a 0
0 b

)
,

a > 0, b < 0.

The proof of Gauss’s theorem relies strongly on the next two lemmas.
In the following, D is the Levi-Civita connection on R3.

Lemma 8.28.
Let S ⊂ R3 be an embedded surface with unit normal n. Let L = dn. Then

DX̃ Ỹ = ∇XY − 〈L(X), Y 〉n,

where D is the Levi-Civita connection on R3, ∇ is the connection on S,
X,Y ∈ Γ(TS), and X̃, Ỹ are their extensions.

Proof. At points of S, 〈n, Ỹ 〉 = 0 implies that

0 = X̃〈Ỹ , n〉
= 〈DX̃ Ỹ , n〉+ 〈Ỹ ,DX̃n〉
= 〈DX̃ , n〉+ 〈Ỹ , L(X)〉.

As DX̃ Ỹ = ∇XY + 〈DX̃ Ỹ , n〉n, we have

DX̃ Ỹ = ∇XY − 〈Y, L(X)〉n.

Lemma 8.29.
Let S ⊂ R3 be as above, and X,Y, Z ∈ Γ(TS). Then

R(X,Y )Z = 〈L(X), Z〉L(X)− 〈L(X), Z〉L(Y ).

Proof. Note that

DX̃(DỸ Z) = DX̃(∇ZY − 〈L(Y ), Z〉n)
= ∇X(∇Y Z)− 〈L(X),∇Y Z〉n−X〈L(Y ), Z〉n− 〈L(Y ), Z〉L(X).
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Similarly,

DỸ (DX̃ Z̃) = ∇Y (∇XZ)−〈L(Y ),∇XZ〉n−Y 〈L(X), Z〉n−〈L(X), Z〉L(Y ).

Now,
D[X̃,Ỹ ]Z̃ = ∇[X,Y ]Z − 〈L([X,Y ]), Z〉n.

Then

0 = kD(X̃, Ỹ )Z̃
= ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z − 〈L(Y ), Z〉L(X) + 〈L(X), Y 〉L(Y ).

Now we can offer a proof of Gauss’s theorem.

Proof.

〈K(e1, e2)e2, e1〉 = 〈L(e2), e2〉〈L(e1), e1〉 − 〈L(e1), e2〉〈L(e2), e1〉
= det 〈L(ei), ej〉
= detL

Proposition 8.30.
Let ∇ be the Levi-Civita connection of a Riemannian manifold (M, g). The
curvature K is skew-symmetric:

g(K(X,Y )Z,W ) + g(Z,K(X,Y )W ) = 0.

Proof. It suffices to show that

g(K(X,Y )V, V ) = 0.

First, note that since ∇ is the Levi-Civita connection,

X(g(Z,Z)) = 2g(∇XZ,Z).

Then

0 = X(Y (g(Z,Z)))− Y (X(g(Z,Z)))− [X,Y ](g(Z,Z))
= X(2g(∇X(∇Y Z), Z)− Y (2g(∇Y (∇XZ), Z)− 2g(∇[X,Y ]Z,Z)
= 2g(∇X(∇Y Z), Z) + 2g(∇Y Z,∇XZ)− 2g(∇Y (∇XZ), Z)

−2g(∇XZ,∇Y Z)− 2g(∇[X,Y ]Z,Z)
= 2g(∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z,Z)
= 2g(K(X,Y )Z,Z).
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In the context of our previous situation, where S ⊂ R3 is an embedded
surface, the previous lemma says that Kx(e1, e2) : TxS → TxS has the form(

0 K
−K 0

)
.

We may think of K as a 2-form on the manifold whose values are linear
transformations on the tangent bundle.

8.5 Geodesics

Definition 8.31. Geodesic
Let ∇ be a connection on M . A curve γ : [a, b] →M is a geodesic for ∇if
∇
dt γ̇ = 0.

Recall that γ̇ = d
dtγ(t) ∈ Γ(γ∗(TM)). Let’s compute the equation ∇

dt γ̇ =
0 in coordinates and see what we get.

0 =
∇
dt
γ̇

=
∇
dt

(
∑
i

γ̇i
∂

∂xi
)

=
∑
i

γ̈i
∂

∂xi
+
∑
i

γ̇i∇γ̇
∂

∂xi

=
∑
k

γ̈k
∂

∂xk
+
∑
i,j

γ̇iγ̇j∇ ∂
∂xj

∂

∂xi

=
∑
k

γ̈k
∂

∂xk
+
∑
i,j

γ̇iγ̇jΓkij
∂

∂xk
.

That is, γ is a geodesic for ∇ if in coordinates, we have

γ̈k = −
∑
i,j

Γkij γ̇iγ̇j .

This is the geodesic equation. Geodesics are often defined as ”the curves of
shortest distance between two points,” which is an accurate local description
of geodesics which may or may not apply globally.

Exercise 8.7.
γ is a geodesic for the Levi-Civita connection in R3 if γ̈ = 0.
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Exercise 8.8.
Given a point x0 ∈M and a tangent vector v, there is a geodesic γ : [a, b] →
M with γ(0) = x0 and dγ( ddt) = v.
Hint: Existence of solutions of differential equations.

Exercise 8.9.
Suppose that ∇ and ∇̃ are two connections on M . For X,Y ∈ Γ(TM),
define

B(X,Y ) = ∇XY − ∇̃XY.

(a) Show that B is tensorial (i.e., it depends only upon X(p) and Y (p)).
(b) B(X,X) = 0 if and only if ∇ and ∇̃ have the same geodesics.

Exercise 8.10.
Let (M, g) be a Riemannian manifold, and ∇ is Levi-Civita connection. For
a smooth function f : M → R, define the “Hessian” ∇2f by

∇2f(X,Y ) = X(Y (f))− (∇XY )(f),

where X,Y ∈ Γ(TM). Prove:
(a) ∇2f is symmetric in X and Y .
(b) ∇2f is tensorial.
(c) ∇2f is positive definite if and only if (f ◦ γ)′′ ≥ 0 for every geodesic γ of
∇.
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9 Some Hamiltonian Mechanics

9.1 Calculus of Variations on Manifolds

We now deal with variational principles, which are a basis for the Hamilto-
nian formulation of mechanics. The material covered here is a generaliza-
tion of the calculus of variations, which one usually sees in a mathematical
physics course. Indeed, instead of dealing with variations in Rn, we study
them on manifolds.

In this section, suppose that (M, g) is a Riemannian manifold, and let
∇ denote the corresponding Levi-Civita connection.

Definition 9.1.
A Lagrangian L on a manifold M is a C∞ map L : TM → R. Given such
a function, we can associate a functional

FL : {curves γ : [a, b] →M} → R

by

FL(γ) =
∫ b

a

1
2
L(γ(t), ˙γ(t))dt.

One particular functional (and associated Lagrangian) will be of partic-
ular importance to us.

Example 9.2.
Define L(x, v) = 1

2gx(v, v). The corresponding functional is given by

E(γ) =
∫ b

a

1
2
gγ(t)( ˙γ(t), ˙γ(t))dt.

This is sometimes known as the action functional . In physics, 1
2gx(v, v)

often has the interpretation as kinetic energy.

Since the functional associated to a Lagrangian is a function from curves
on M into R, it makes sense to ask whether there are curves that maximize
or minimize the values of the functional. That is, we want to know whether
“critical points” of a functional FL. Such optimizing curves are said to be
L-critical.

Definition 9.3.
Given a curve γ : [a, b] →M , a smooth variation of γ (with fixed endpoints)
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is a smooth map Γ : [a, b]× (−ε, ε) →M such that
1) Γ(t, 0) = γ(t);
2) Γ(a, s) = γ(a), Γ(b, s) = γ(b) for all s.
A curve γ : [a, b] → M is said to be L-critical for a given Langrangian L if
for any variation γs = Γ(t, s), we have

d

ds

∣∣∣
s=0

FL(γs) = 0.

Remark 9.4.
If γ : [a, b] →M is L-critical, then its restriction γ

∣∣∣
[a′,b′]

is L-critical for any

[a′, b′] ⊂ [a, b].

Our goal is to find necessary conditions for a curve γ to be L-critical for
a given Lagrangian L on a manifold M . In looking for such curves, let us
assume that γ is such a curve and that γ([a, b]) lies in a coordinate chart
(U, x1, . . . , xn). We also may assume that U ⊂ Rn, and x1, . . . , xn, v1, . . . , vn

are coordinates on U×Rn = TU . Further, let γs be a variation of γ; we have
γs = (γ1

s , . . . , γ
n
s ) and γ̇s = (γ1

s , . . . , γ
n
s , γ̇

1
s , . . . , γ̇

n
s ). Let h(t) = ∂

∂s

∣∣∣
s=0

γs(t).

Note that h(a) = h(b) = 0; otherwise, h(t) is arbitrary. Given h : [a, b] →
Rn, we can take γs(t) = γ(t) + sh(t). Also

∂

∂s

∣∣∣
s=0

˙γs(t) =
∂

∂s

∣∣∣
s=0

( ∂
∂t

∣∣∣
t
γs(t)

)
=

∂

∂t

∣∣∣
t

( ∂
∂s

∣∣∣
s=0

γs(t)
)

=
∂

∂t

∣∣∣
t
h(t) = ˙h(t).

That is,
∂

∂s

∣∣∣
t
(γs(t), ˙γs(t)) = (h(t), ˙h(t)).

Since γ is L-critical,

0 =
d

ds

∣∣∣
s=0

FL(γs)

=
d

ds

∣∣∣
s=0

∫ b

a
L(γ(s), ˙γ(s)) dt

=
∫ b

a

∂

∂s

∣∣∣
s=0

L(γs, γ̇s) dt
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=
∫ b

a

(∑
i

∂L

∂xi
(γs, γ̇s)

∂

∂s

∣∣∣
s=0

γis +
∑
i

∂L

∂vi
(γs, γ̇s)

∂

∂s

∣∣∣
s=0

γ̇is

)
dt

=
∫ b

a

(∑
i

∂L

∂xi
hi +

∑
i

∂L

∂vi
ḣi
)
dt

=
∑
i

∫ b

a

∂L

∂xi
hi dt+

∑
i

∂L

∂vi
hi
∣∣∣b
a
−
∑
i

∫ b

a

d

dt

( ∂L
∂vi

)
hi dt

=
∑
i

∫ b

a

( ∂L
∂xi

− d

dt

∂L

∂vi

)
hi dt

for all h1, . . . , hn. Thus, we have that

∂L

∂xi
(γ, γ̇) = − d

dt

( ∂L
∂vi

(γ, γ̇)
)
,

the Euler-Lagrange equations. This result can be summarized in the
following theorem:

Theorem 9.5.
Suppose L is a Lagrangian and that γ is an L-critical curve. Then locally,
γ must satisfy the Euler-Lagrange Equations :

∂L

∂xi
(γ, γ̇) =

−d
dt

(
∂L

∂vi
).

Let us look at a specific case, namely, where L is the energy Lagrangian.

Example 9.6.
Let g be a Riemannian metric and L be the energy Lagrangian on a manifold
M ; that is, for x ∈ TxM ,

L(x, v) =
1
2
gx(v, v).

We can rewrite this expression in coordinates as

L(x, v) =
∑
k,l

gkl(x)vkvl,

whence
∂L

∂xi
=
∑
k,l

∂gkl(x)
∂xi

vkvl
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and
∂L

∂vi
=
∑
k,l

(gil(x)vl + gkiv
k.

The Euler-Lagrange equations in this case are∑
k,l

∂gkl
∂xi

γ̇kγ̇l = −
∑
k,l

d

dt
(gilv̇l + gkiγ̇

k),

which implies that∑
i,q

giqγ̈
q = −1

2

∑
i,k,l

(∂gki
∂xl

+
∂gil
∂xk

− ∂gkl
∂xi

)
γ̇lγ̇k

Letting (gαβ) = (gαβ)−1, we see that
∑

β g
αβgβγ = δαγ , which implies that

γ̈j = −
∑
k,l

Γjklγ̇
kγ̇l,

where Γikl are the Christoffel symbols for the Levi-Civita connection. We
now see that this is the geodesic equation; thus, L-critical curves for the
energy Lagrangian must be geodesics. Let us summarize this as a corollary.

Example 9.7.
Suppose that

L(x, v) =
1
2
gx(v, v)− V (x),

where V ∈ C∞(M) is the potential energy of some mechanical system, and
1
2gx(v, v) represents its kinetic energy. Hamilton’s Principle in mechanics
states that a particle subject to these forces (in a conservative system) will
move exhibit trajectories γ such that the action functional∫ b

a
L(γ(t), γ̇(t)) dt

is minimized. That is, one can obtain physical trajectories of the system
by solving the Euler-Lagrange equations with respect to L. Hamilton’s
Principle is actually equivalent to Newton’s Second Law.

Corollary 9.7.1.
If (M, g) is a Riemannian manifold, then curves that are L-critical for the
energy Lagrangian are the geodesics for the Levi-Civita connection on M .
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The Euler-Lagrange Equations are a local characterization of L-critical
curves; we also have another formulation that includes a global statement :

Theorem 9.8.
Suppose that L : TM → R is a Lagrangian. Then there is a unique function
EL : TM → R and a unique 1-form αL ∈ Γ1(TM) which have coordinate
expressions

EL =
∑
i

vi
∂L

∂vi
− L

and
αL =

∂L

∂vi
dxi.

Moreover, γ : [a, b] → M , γ̇ : [a, b] → TM satisfy the Euler-Lagrange
equations if and only if

ι( ¨γ(t))(dαL) ˙γ(t)
= −(dEL) ˙γ(t)

.

The proof of this theorem is non-trivial and proceeds in several steps.
Step 1: Let V be a finite-dimensional vector space. Define a function
R : V → TV = V × V by R(v) = (v, v). Note that this is a vector field; it is
actually the radial vector field, for it has coordinate expression

R(v) =
∑
i

vi
∂

∂vi
.

The flow of this vector field is

Φt(v) = v · et.

Now, more generally, if π : E →M is a vector bundle, then

Φt(x, v) = (x, etv)

is a flow, where x ∈ M and v ∈ TxM . The corresponding vector field is
the radial vector field, which we’ll denote simply by R. If E = TM and
(x1, . . . , xn) are coordinates on M , (x1, . . . , xn, v1, . . . , vn) are coordinates
on TM , and

R =
∑
i

vi
∂

∂vi
.

Define
EL = R(L)− L = dL(R)− L.
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Step 2: The second step is a discussion of the Legendre transform. First, let
V be a (finite-dimensional) vector space and f ∈ C∞(V ). Then for v ∈ V ,
dfv ∈ V ∗ ' T ∗v V . That is, there is a map Lf : V → V ∗ given by

Lf (v) = dfv.

In coordinates, this is

Lf (v1, . . . , vn) =
( ∂f
∂v1

, . . . ,
∂f

∂vn

)
.

Now let us extend this definition to an arbitrary manifold M . Given f ∈
C∞(TM), for each x ∈M , we have

Lf
∣∣∣
TxM

: TxM → T ∗xM

given by
v 7→ d(f

∣∣∣
TxM

)v.

That is, there is a map Lf : TM → T ∗M given by

Lf (x, v) = d(f
∣∣∣
TxM

)v.

In coordinates,

Lf (x, v) =
(
x1, . . . , xn,

∂f

∂v1
, . . . ,

∂f

∂vn

)
.

This concludes step 2, but before we move on, let us see an explicit example
of the Legendre transform.

Example 9.9.
Suppose that (M, g) is a Riemannian manifold. Let L(x, v) = 1

2gx(v, v).
Recalling how we differentiate bilinear forms, we obtain

d(L
∣∣∣
TxM

)v(w) =
d

dt

∣∣∣
t=0

L(x, v + tw)

=
d

dt

∣∣∣
t=0

1
2
gx(v + tw, v + tw)

=
d

dt

∣∣∣
t=0

1
2
(gx(v, v) + 2tgx(v, w) + t2gx(w,w))

= gx(v, w)

That is, LL(x, v) = gx(v, ·).
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Exercise 9.1.
Suppose that (M, g) is a Riemannian manifold. Then g induces a diffeomor-
phism from TM to T ∗M by (x, v) 7→ gx(v, ·).

Step 3: Next, we discuss the tautological 1-form on the cotangent bun-
dle, T ∗M . The content of this discussion is contained in the following lemma:

Lemma 9.10.
Let M be a manifold. Then there is a unique 1-form α on T ∗M such that
for any coordinates (x1, . . . , xn) on M and (x1, . . . , xn, p1, . . . , pn) on T ∗M ,

α =
∑
i

pi dxi.

Proof. Let q ∈M , η ∈ T ∗qM , and w ∈ T(q,η)(T ∗M). Define

α(q,η)(w) = η(dπ(q,η)(w)),

where π : T ∗M →M is the bundle projection, whence dπ(q,η) : T(q,η)(T ∗M) →
TqM. If (x1, . . . , xn) are coordinates on M and (x1, . . . , xn, p1, . . . , pn) are
the corresponding coordinates on T ∗M , then π(x1, . . . , xn, p1, . . . , pn) =
(x1, . . . , xn); hence

dπ(q,η)

( ∂

∂xi

∣∣∣
(q,η)

)
=

∂

∂xi

∣∣∣
q

and
dπ(q,η)

( ∂

∂pi

∣∣∣
(q,η)

)
= 0.

This in turn means that

α(q,η) =
∑
i

(
α(q,η)

( ∂

∂xi

∣∣∣
(q,η)

)
dxi + α(q,η)

( ∂

∂pi

∣∣∣
(q,η)

)
dpi
)

=
∑
i

ι
( ∂

∂xi

∣∣∣
q

)
dxi

=
∑
i

pi(η)dxi

That is,
α =

∑
i

pi dxi.
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Step 4: Now define
αL = (LL)∗α.

In coordinates,

LL(x1, . . . , xn, p1, . . . , pn) =
(
x1, . . . , xn,

∂L

∂v1
, . . . ,

∂L

∂vn

)
,

which implies that

(LL)∗α =
∑
i

∂L

∂vi
dxi.

Step 5: It remains to show that γ solves the Euler-Lagrange equations
if and only if

ι(γ̈)(dαL)γ̇ = −(dEL)γ̇ . (4)

Throughout this section we use Einstein’s summation convention. Before
we proceed, recall that γ = (γ1, . . . , γn), γ̇ = (γ1, . . . , γn, γ̇1, . . . , γ̇n) and
γ̈ = (γ1, . . . , γn, γ̇1, . . . , γ̇n, γ̈1, . . . , γ̈n). The Euler-Lagrange equations are

∂L

∂xi
(γ, γ̇) = − d

dt

( ∂L
∂vi

(γ, γ̇)
)

= − ∂2L

∂xjvi
(γ, γ̇)γ̇j − ∂2L

∂vjvi
(γ, γ̇)γ̈j .

To prove (4), we first express the equation in coordinates. Noting that

αL =
∂L

∂vi
dxi

and
ι(γ̈) dxi ∧ dxj = γ̇jdxi − γ̇idxj ,

we see that

ι(γ̈)(dαL)γ̇ = ι(γ̈)
( ∂2L

∂xj∂vi
dxj ∧ dvi + ∂2L

∂vj∂vi
dvj ∧ dxi

)
(5)

=
∂2L

∂xj∂vi
(γ̇j dxi − γ̇i dxj) +

∂2L

∂vj∂vi
(γ̈j dxi − γ̇i dvj) (6)

=
( ∂2L

∂xjvi
γ̇j − ∂2L

∂xivj
γ̇j +

∂2L

∂vjvi
γ̈j
)
dxi − ∂2L

∂vjvi
γ̇i dvi. (7)

Furthermore,

dEL = d(vj
∂

∂vj
− L)

=
∂

∂xi

(
vi
∂L

∂vj
− L

)
dxi +

∂

∂vi

(
vj
∂L

∂vj
− L

)
dvi

=
(
vj

∂2L

∂xivj
− ∂L

∂xi

)
dxi +

( ∂L
∂vi

+ vj
∂2L

∂vi∂vj
− ∂L

∂vj

)
dvi.
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Thus, we obtain

−(dEL)γ̇ =
(
− vj

∂2L

∂xivj
+
∂L

∂xi

)
dxi − γ̇j

∂2L

∂vi∂vj
dvi. (8)

Now, equations (7) and (8) are equal if and only if all of their coefficients
are equal; that is, if and only if, for all i, we have

∂2L

∂xj∂vi
γ̇j +

∂2L

∂vj∂vi
γ̈j =

∂L

∂xi
,

which is true if and only if γ satisfies the Euler-Lagrange equations.

9.2 Some Symplectic Geometry

This section is meant to serve a two-fold purpose: first, to follow up on the
last result of the previous section, and second, to provide a superficial and
cursory introduction to symplectic geometry. In the following discussion, V
is a finite-dimensional vector space.

Definition 9.11.
A skew-symmetric form ω : V × V → R is nondegenerate (symplectic)
if, for any v ∈ V , ω(v, w) = 0∀w implies v = 0.

Note here that ω ∈ Λ2(V ∗). In addition, skew symmetry tells us that
ω(v, v) = −ω(v, v) for all v ∈ V , which means that ω(v, v) = 0 for all v ∈ V .
The following lemma establishes an equivalent condition for nondegeneracy.

Example 9.12.
ω = dx ∧ dy on R2 is nondegenerate. More generally,

ω =
∑

dxi ∧ dyi

is nondegenerate on R2n, where coordinates are given by (x1, . . . , xn, y1, . . . , yn).

Lemma 9.13.
ω ∈ Λ2(V ∗) is nondegenerate if and only if ω# : V → V ∗ given by v 7→ ω(v, ·)
is an isomorphism.

Proof. Since V and V ∗ have the same dimension, ω# is an isomorphism if
and only if its kernel is trivial (it is a linear map). Now the kernel of ω# is
precisely

{v ∈ V : ω(v, w) = 0 ∀w ∈ V }.

By the definition of nondegeneracy, this kernel is trivial if and only if ω is
nondegenerate.
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Remark 9.14.
Note that

ω#(v) = ι(v)ω.

Additionally, note that if ω is nondegenerate, then for l ∈ V ∗, there is a
unique vector vl such that

ω(vl, ·) = l(·).

That is,
ω(vl, ·) = ι(vl)ω.

Definition 9.15.
A vector space V together with a nondegenerate skew-symmetric form ω is
called a symplectic vector space.

Now we translate this concept to manifolds.

Definition 9.16.
Let Q be a manifold. A 2-form ω ∈ Ω2(Q) is symplectic if
1) ωq ∈ Λ2(T ∗qQ) is nondegenerate for all q ∈ Q;
2) dω = 0.

Definition 9.17.
A symplectic manifold is a manifold M together with a symplectic form
ω, written (M,ω).

Example 9.18.
Let ω = dx ∧ dy and M = R2. Then (M,ω) is a symplectic form. This
construction generalizes naturally to R2n for any n. In the case n = 1, ω#

can be realized as the matrix (
0 −1
1 0

)
Let (M,ω) be a symplectic manifold. The nondegeneracy of ω means

that, given f ∈ C∞(M), we can implicitly define a vector field Xf corre-
sponding to f . This vector field is called the Hamiltonian vector field
Xf of f .

Definition 9.19.
Let (M,ω) be a symplectic manifold and suppose that f ∈ C∞(M). The
Hamiltonian vector field Xf of f is the unique vector field satisfying

ι(Xf )ω = df.
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Exercise 9.2.
Check that if ω is a nondegenerate form, then Xf as defined above is indeed
unique.

Example 9.20.
Let us now interpret the last result from the previous section. We had that

ι(γ̈)dαL = −dEL (9)

if and only if γ solves the Euler-Lagrange equations. Now, note that if dαL
is nondegenerate, then there is a unique vector field XEL

such that

ι(XEL
)dαL = −dEL.

This says that γ̈ is the integral curve of some vector field on the tangent
bundle if and only if it solves the Euler-Lagrange equations. In the case of
symplectic manifolds, (9) has this particular interpretation.

Example 9.21.
Suppose that

L(x, v) =
1
2
gx(v, v)− V (x),

where V ∈ C∞(M). (If V is taken to represent the potential energy of some
mechanical system, then L is the Hamiltonian of that system.) Then the
Legendre transform LL : TM → T ∗M is a diffeomorphism, and

dαL = d(L∗Lα) = L∗Ldα.

Now, locally, we have

dα = d(
∑
i

pi dxi) =
∑
i

dpi ∧ dxi,

which is nondegenerate. Since LL is a diffeomorphism, dαL is also nonde-
generate.

Here are some other observations:
1) If dαL is nondegenerate, then the energy EL is conserved. That is, if φt
is the flow of XL, then

EL(φt(z)) = EL(z) ∀z ∈ TM, ∀t
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if and only if

0 =
d

dt

∣∣∣
t=s
EL(φt(z))

= (XL(EL))(φt(z))
= (dEL)(XL)(φt(z))
= (−ι(XL)dαL)(XL)(φt(z))
= −(dαL(XL, XL))(φt(z))
= 0

since dαL is skew-symmetric.
2) Symmetries gives us conservation laws. Briefly, we sketch what this means
and give an example. First, let X be a complete vector field on M with flow
Φt. We can lift the flow to TM by defining

Ψt = dΦt.

The chain rule and the group property of Φt that Ψt satisfies the group
property; hence, Ψt is a flow on TM . Next, let

Y =
d

dt

∣∣∣
t=0

Ψt;

then Y is a vector field on TM .

Definition 9.22.
A complete vector field X on M is an infinitessimal symmetry of L :
TM → R if Ψ∗

tL = L, where Ψt is the lifted flow to TM . Alternatively, it
is an infinitessimal symmetry of L if

Y (L) = L,

where Y is the lifted vector field to TM .

Here is a theorem of Noether, which we state without proof.

Theorem 9.23.
If X is a symmetry of L : TM → R, Y is its lifted vector field to TM , and
dαL is nondegenerate, then

hx := αL(Y ) ∈ C∞(TM)

is conserved; that is, h is constant along integral curves of XL, where

ι(XL)dαL = −EL.

109



Example 9.24.
This example shows that rotational symmetry in a central force field (in R3)
gives rise to conservation of angular momentum. Consider a particle in such
a field of mass m; by Newton’s Second Law, if γ is the trajectory of the
particle, then

m
d2

dt2
γ(t) = F (γ, γ̇),

where F represents the force acting on the particle. If F is conservative,
then F = −∇V for some potential function V ∈ C∞(R3). The appropriate
Lagrangian for the system, as mentioned in an earlier example, is

L(x, v) =
1
2

∑
i

(vi)2 − V (x).

The Euler-Lagrange equations for this Lagrangian state

d

dt
(mγ̇i) = mγ̈i = −∂V

∂xi
(γ).

Let us further assume that V (x) = W (||x||2) for some W ∈ C∞(R \ {0}).
(An example of such a force is gravity.) If A is an orthogonal matrix, then
〈Ax,Ax〉 = 〈x, x〉 for any x ∈ R3. This in turn means that

L(Ax,Av) =
1
2
m||Av||2 − V (||x||) =

1
2
m||v||2 − V (||x||).

Take

A(t) =

 cos t − sin t 0
sin t cos t 0
0 0 0


Now,ψt(x) = A(t)x is a flow on R3. Its lift is

ψt(x, v) = (A(t)x,A(t)v),

which implies that

d

dt

∣∣∣
t=0

(A(t))x =

 0 −1 0
1 0 0
0 0 0

 x1

x2

x3


=

 x2

−x2

0

 = x2
∂

∂x1
− x1

∂

∂x2
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is a symmetry of L. The lifted vector field Y in this case is given by

Y = x2
∂

∂x1
− x1

∂

∂x2
+ v2

∂

∂v1
− v1

∂

∂v2
.

Furthermore,

αL =
∑
i

∂L

∂vi
dxi =

∑
i

mvi dxi.

Now, Noether’s Theorem tells us that

hx(x, v) = ι(Y )αL = mv1x2 −mv2x1

is a conserved quantity. This expression, however, is

m(v × x) ·

 0
0
1

 ,

the x3 component of angular momentum. Similarly, using other rotations
about the x1 and x2 axes, we can observe that the other components of
angular momentum are conserved, whence the quantity

(mv)× x

is conserved.

By similar methods, one can indeed see that translational symmetry
yields conservation of linear momentum, as one would expect.

As we mentioned earlier, this has been a very superficial introduction
to symplectic geometry and Hamiltonian mechanics. For further study in
this area, one needs to concentrate on both Lie groups (which is where the
symmetries originate; they often arise as lie groups acting on manifolds) and
symplectic geometry.
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Appendix A: Multilinear Algebra

In this appendix, we review some of the basic linear algebra concepts neces-
sary for much of the material concerning vector bundles, differential forms,
and connections. These concepts include tensor products, exterior algebras,
alternating maps, and pairings.

I: Tensor Products of Vector Spaces

Let V and W be finite dimensional vector spaces over R. We want to
define a new vector space V ⊗R W = V ⊗W together with a bilinear map
⊗ : V ×W → V ⊗W such that for any bilinear map b : V ×W → Z, there
is a unique linear map b : V ⊗W → Z with b(v ⊗ w) = b(v, w). This new
vector space is called the tensor product of V and W , and the existence
of b is its universal property.

Proposition 9.25.
If V and W are two vector spaces and V ⊗W exists, then it is unique (up
to isomorphism).

Proof. Suppose that V ⊗1 W and V ⊗2 W are two such vector spaces with
bilinear maps ⊗i : V ×W → V ⊗i W . Then we obtain maps ⊗1 and ⊗2

such that the following diagram commutes:

V ⊗1 W
⊗2

))RRRRRRRRRRRRRR

V ×W

⊗1

OO

⊗2

// V ⊗2 W
⊗1

iiRRRRRRRRRRRRRR

Define

A1 = ⊗1 ◦ ⊗2 : V ⊗1 W → V ⊗2 W

A2 = ⊗2 ◦ ⊗1 : V ⊗2 W → V ⊗1 W ;

these are linear maps such that

V ⊗iW
Ai

))RRRRRRRRRRRRR

V ×W

⊗i

OO

⊗i

// V ⊗iW

Uniqueness and the fact that the identity maps also make these diagrams
commute means that A1 = A2 = id, whence we get that V ⊗1 W ' V ⊗2

W .
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Proposition 9.26.
Tensor products exist.

Proof. Fix finite dimensional vector spaces V andW (over R). Let F (V ×W )
be the vector space spanned by V ×W . That is,

F (V ×W ) =
∑

(v,w)∈V×W

R(v, w).

Note that we have an inclusion map ι : V ×W → F (V ×W ). Now consider
the following collection of vectors in F (V ×W ):

(v1 + v2, w)− (v1, w)− (v2, w)
(v, w1 + w2)− (v, w1)− (v, w2)
α(v, w)− (αv,w)
α(v, w)− (v, αw),

for all v, v1, v2 ∈ V , w,w1, w2 ∈ W and α ∈ R. Let K be the subspace
spanned by this collection, and define

V ⊗W = F (V ×W )/K.

Furthermore, define the map ⊗ : V ×W → V ⊗W by composing

V ×W → F (V ×W ) → F (V ×W )/K.

The definition of K forces ⊗ to be bilinear; to prove existence, we thus need
to verify the universal property.
Suppose b : V ×W → Z is bilinear. Since V ×W is a basis for F (V ×W ),
b defines a unique linear map b : F (V × W ) → Z given on the basis by
b((v, w)) = b((v, w)). As b is bilinear, it is 0 on K (by the definition of K);
thus, we obtain a unique linear map b : F (V ×W )/K = V ⊗W → Z with
b(v ⊗ w) = b((v, w)) = b((v, w)). This verifies the universal property.

If {e1, . . . , ek} is a basis for V and {f1, . . . , fj} is a basis for W , then it
is evident that {ei ⊗ fj} spans V ⊗W . As the next lemma shows, however,
more is true: {ei ⊗ fj} is actually a basis for V ⊗W .

Lemma 9.27.
If {vi} is a basis for V and {wj} is a basis for W , then B = {vi ⊗ wj} is a
basis for V ⊗W . In other words, dimV ⊗W = dimW · dimW.
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Proof. Since we know that B spans V ⊗W , we need check only that if∑
i,j

cijvi ⊗ wj = 0,

then cij = 0 for all i and j. Consider φkl : V × W → R defined by
φkl(vi, wj) = 1 if (k, l) = (i, j) and 0 otherwise. This is a bilinear map,
and by the universal property of the tensor product, we obtain linear maps
φkl : V ⊗W → R. Now,

0 = φkl

(∑
i,j

cijvi ⊗ wj

)
=

∑
i,j

cij · φkl(vi ⊗ wj)

=
∑
i,j

cij · φkl(vi, wj)

= ckl.

Here are some more examples illustrating the power of the universal
property.

Example 9.28.
V ⊗W 'W ⊗ V .

Proof. Consider b : W × V → V ⊗W defined by

b((w, v)) = v ⊗ w.

Since this map is bilinear, there is a unique linear map b : W ⊗V → V ⊗W
with b(w⊗v) = v⊗w. Since b is surjective, it is an isomorphism by dimension
count.

Example 9.29.
V ∗ ⊗W ' Hom(V,W ).

Proof. Consider b : V ∗ ×W → Hom(V,W ) defined by

(b(v∗, w))(v) = v∗(v)w.

Since b is bilinear, it induces a linear map b : V ∗ ⊗W → Hom(V,W ) given
by

(b(v∗ ⊗ w))(v) = v∗(v)w.
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Observe that linear maps of the form b(v∗, w) span Hom(V,W) (similarly,
rank one matrices span Mn(R)). Then b is an isomorphism by dimension
count.

Example 9.30.
If A : V →W and B : V ′ →W ′ are two linear maps, then there is a unique
linear map A⊗B : V ⊗V ′ →W⊗W ′ such that (A⊗B)(v⊗w) = A(v)⊗B(w).

Proof. Consider b : V ×W → V ′ ⊗W ′ given by

b(v, w) = Av ⊗Bw.

b is bilinear, whence the universal property guarantees a linear map b :
V ⊗W → V ′ ⊗W ′ with the desired property.

Exercise 9.3.
Show that V ∗ ⊗W ∗ ' (V ⊗W )∗.

Example 9.31.
V ∗ ⊗W ∗ ' bilin(V ×W,R).

Proof. Consider b : V ∗ ×W ∗ → bilin(V ×W,R) given by

(b(v∗, w∗))(v, w) = v∗(v) · w∗(w).

b is bilinear and hence induces b : V ∗ ⊗W ∗ → bilin(V ×W,R). If {v∗i } is
a basis for V ∗ and {w∗j} is a basis for W ∗, then {v∗i ⊗ w∗j} is a basis for
V ∗ ⊗W ∗ and

b(v∗i ⊗ w∗j ) = φij ,

the maps defined above when we proved that {v∗i ⊗ w∗j} is a basis. As the
maps {φij} form basis for bilin(V ×W,R), b is an isomorphism.

Exercise 9.4.
V ⊗ (U ⊗W ) ' (V ⊗ U)⊗W.

Exercise 9.5.
Prove that given a multilinear map

f :
n∏
i=1

V → U,

then there exists a unique linear map defined on the n-fold tensor product

f : V ⊗n → U

with
f(v1 ⊗ · · · vn) = f(v1, . . . , vn).
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II: The Grassman Algebra and Alternating Maps

Definition 9.32.
An algebra over R is a vector space together with a bilinear map A×A→ R
(“multiplication”). An algebra A is said to be an algebra with unity if
there is an element 1 ∈ A such that 1 · a = a for all a ∈ A.

Example 9.33.
Let M be a manifold. Then Γ(TM), the collection of all vector fields on M ,
is an algebra over R, where the multiplication is given by the Lie bracket.
Γ(TM) is an example of a non-associative algebra.

Example 9.34.
Fix a finite-dimensional vector space over R. Define τ0(V ) = R, τ1(V ) = V ,
and τk(V ) = V ⊗k, the k-fold tensor product. Next, define

τ(V ) =
∞∑
k=0

τk(V )

(direct sum). We say that α ∈ τ(V ) has degree k if α ∈ τk(V ). A typical
element in τ(V ), however, has the form

u = α1 ⊕ · · · ⊕ αk,

where αj ∈ τ j(V ) for 1 ≤ j ≤ k. We define a multiplication by noting that
if α ∈ τk(V ) and β ∈ τ l(V ), then α⊗ β ∈ τk+1(V ).

Remark 9.35.
τ(V ) is an example of a graded algebra. An algebra A is said to be graded
by integers if

A =
∑
i∈Z

Ai

and for a ∈ Ai and b ∈ Aj , a · b ∈ Ai+j .

Definition 9.36. Grassman Algebra
Let V be a finite dimensional vector space over R. The Grassman algebra
Λ(V ) is an algebra over R with unity together with an injective linear map
i : V → Λ(V ) called the structure map which satisfies the following
universal property: If A is an algebra over R with unity and j : V → A is
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a linear map such that j(v) · j(v) = 0 for all v ∈ V , then there is a unique
algebra map j : Λ(V ) → A such that the following diagram commutes.

V
i

''OOOOOOOOOOOOO

j

��
A Λ(V )

j

oo

We now prove that Λ(V ) actually exists and is unique. Since the proof of
uniqueness is very similar to the proof of uniqueness of the tensor product,
we concentrate solely on existence.

Proposition 9.37.
If Λ(V ) exists, then it is unique (up to isomorphism).

Proposition 9.38.
Λ(V ) exists.

Proof. Let I be the two-sided ideal in τ(V ) generated by the set {v ⊗ v :
v ∈ V }, and define Λ(V ) = τ(V )/I. Note that since τ(V ) is graded, so is I,
and

I =
∞∑
k=2

I ∩ τk(V ).

Since I is an ideal, Λ(V ) is an algebra, and the induced multiplication there
is denoted by ∧ (“wedge”). So the composition V → Λ(V ) → Λ(V )/I is an
injection.
Now that we have ”constructed” Λ(V ), let us prove the universal property.
Suppose that A is an algebra and that we are given j : V → A such that
j(v) · j(v) = 0 for all v ∈ V . Consider a map b : V × V → A given by
(v, w) 7→ j(v) · j(w). Since this map is bilinear, there is a unique linear map
j(2) : V ⊗ V → A with j(2)(v ⊗ w) = j(v) · j(w). By induction, we have
j(k) : V ⊗k → A with

j(k)(v1 ⊗ · · · ⊗ vk) = j(v1) · · · j(vk).

In addition, we define j(0)(a) = a · 1A, for all a ∈ R. In this way, we obtain
an algebra map j̃ : τ(V ) → A. By assumption, j̃(v ⊗ v) = 0 for all v ∈ V ,
whence j̃

∣∣∣
I

= 0 which implies that there is a map j : Λ(V ) → A such that

j(v) = j(v) for all v ∈ V . Since j is uniquely determined on generators, it
is unique.
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Remark 9.39.
For any v ∈ V , we have v ∧ v = 0. Also,

0 = (v1 + v2) ∧ (v1 + v2) = v1 ∧ v1 + v1 ∧ v2 + v2 ∧ v1 + v2 ∧ v2

gives that
v1 ∧ v2 = −v2 ∧ v1;

that is, the wedge product is skew-commutative.

Remark 9.40.
Let Λk(V ) = τk(V )/(τk(V ) ∩ I) (called the kth exterior power of V ).
Then Λ(V ) =

∑∞
k=0 Λk(V ), and in addition, Λ0(V ) = R and Λ1(V ) = V .

Also, if α ∈ Λk(V ) and β ∈ Λl(V ), then α ∧ β ∈ Λk+1(V ). Thus, Λ(V ) is
also a graded algebra.

Remark 9.41.
We know that if {v1, . . . , vn} is a basis for V , then {vi ⊗ vj} is a basis for
V ⊗V . By induction, {vi1⊗· · ·⊗vik} is a basis for V ⊗k. Thus, {vi1∧· · ·∧⊗vik}
at least generates Λk(V ). Since ∧ is skew-commutative, however, we can
reduce this generating set to

{{vi1 ∧ · · · ∧ ⊗vik : i1 < · · · < ik},

which implies that
Λl(V ) = 0

whenever l > dimV . Later we will see that the previous spanning set is also
a basis.

Definition 9.42. Alternating Maps
A multilinear map

f :
n∏
i=1

V → R

is said to be alternating if

f(v1, . . . , vn) = (−1)σf(vσ(1), . . . , vσ(n)),

where σ ∈ Sn is a permutation on n letters. In other words, f is alternating
is it is multilinear and if when we permute coordinates, we change the value
of f by the sign of the permutation.
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Example 9.43.
Consider a vector space V and a, b ∈ V ∗. Define

(a ∧ b)(v1, v2) = a(v1)b(v2)− a(v2)b(v1).

Then a ∧ b is alternating.

Example 9.44.
Let V = Rn. Then det :

∏n
i=1 Rn → R is alternating.

There is a strong connection between alternating maps and exterior pow-
ers.

Proposition 9.45. Universal Property of Λk(V )
Let U and V be vector spaces. If f : V × · · · × V → U , there is a unique
linear map f : Λk(V ) → U with

f(v1 ∧ · · · ∧ vk) = f(v1, . . . , vk).

Proof. By the universal property of V ⊗k, there is a unique linear map f̃ :
V ⊗k → U such that f̃(v1 ⊗ · · · ⊗ vk) = f(v1, . . . , vk). Sice f is alternating,
f
∣∣∣
I∩V ⊗k

= 0, where I is the ideal defined in the construction of Λ(V ). This

gives us f : Λk(V ) = V ⊗k/(I ∩ V ⊗k) → U with the desired property.

Corollary 9.45.1.
Let A : V →W be a linear map. Then there is a unique linear map Λk(A) :
Λk(V ) → Λk(W ) such that

(Λk(A))(v1 ∧ · · · ∧ vk) = (Av1) ∧ · · · ∧ (Avk).

Proof. Consider the map b : V × · · · × V → Λk(W ) given by

(v1, . . . , vk) 7→ (Av1) ∧ · · · ∧ (Avk).

Since b is an alternating map, one may apply the previous proposition to
obtain the desired result.

Lemma 9.46.
Let V be an n-dimensional vector space. Then Λn(V ) ' R.

Proof. We may assume that V = Rn. Let e1, . . . , en be the standard basis;
we need to show that e1 ∧ · · · ∧ en 6= 0. det : Rn × · · · × Rn → R gives that
det(e1, . . . , en) = 1, so that det : Λn(Rn) → R satisfies det(e1∧· · ·∧en) = 1,
whence e1 ∧ ·en 6= 0.
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Corollary 9.46.1.
If {f1, . . . , fn} is a basis for V , then {fi1 ∧ · · · ∧ fik : 1 ≤ i1 < · · · < ik ≤ n}
is a basis for Λk(V ).

Proof. From earlier in the section, we know that the above set generates
Λk(V ), so we need only check independence. Suppose

0 =
∑

ai1,...,ikfi1 ∧ · · · ∧ fik .

Pick one sequence j1 < j2 < · · · < jk. Let jk+1 < · · · < jn be the remaining
indices. Consider

(
∑

ai1,...,ikfi1 ∧ · · · ∧ fjk) ∧ fjk+1
∧ · · · ∧ fjn

= aj1,...,jkfj1 ∧ · · · fjk ∧ fjk+1
∧ · · · ∧ fjn ,

which gives aj1,...,jk = 0.

Corollary 9.46.2.

dim Λk(V ) =
(

dimV
k

)
III: Pairings

Definition 9.47.
A pairing is a bilinear map 〈·, ·〉 : V ×W → R.

Definition 9.48.
A pairing is nondegenerate if

〈v0, w〉 = 0 ∀w ∈W ⇒ v0 = 0
〈v, w0〉 = 0 ∀v ∈ V ⇒ w0 = 0.

Example 9.49.
〈·, ·〉 : (V ∗ ⊗W ∗)× (V ⊗W ) → R given by

〈v∗ ⊗ w∗, v ⊗ w〉 = v∗(v) · w∗(w)

is nondegenerate.

Proposition 9.50.
If b : V ×W → R is a nondegenerate pairing, then V 'W ∗ and W ' V ∗.
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Proof. Consider b#1 : V → W ∗ given by (b#1 (v))(w) = b(v, w). Then b#1
is linear, and ker b#1 = {v0 ∈ V : b#1 (v0) = 0} = {v0 ∈ V : b(v0, w) =
0 ∀w} = {0}. Thus, dimV ≤ dimW ∗ = dimW. Similarly, we have dimW ≤
dimV ∗ = dimV. As dimW = dimV , we then see that b#1 is an isomorphism.
Similarly, b#2 : W → V ∗ given by w 7→ b(·, w) is an isomorphism.

Proposition 9.51.
There is a nondegenerate pairing 〈·, ·〉 : Λk(V ∗)× Λk(V ) → R with

〈v∗1 ∧ · · · ∧ v∗k, v1 ∧ · · · ∧ vk〉 = det
(
v∗i (wj)

)
.

Proof. Consider b : (V ∗)k × V k → R given by

(l1, . . . , lk, v1, . . . , vk) 7→ det
(
li(vj)

)
.

For a fixed (l1, . . . , lk) ∈ (V ∗)k, b is alternating in the v’s. So there is a map
b : (V ∗)k × Λk(V ) → R with

(l1, . . . , lk, v1 ∧ · · · ∧ vk) 7→ det
(
li(vj)

)
.

Similarly, for a fixed v1 ∧ · · · ∧ vk ∈ Λk(V ), b is alternating in the l’s, which
means that there is a map b̃ : Λk(V ∗)×Λk(V ) → R with the desired property.

Exercise 9.6.
Suppose that dimV = n. Given a linear map A : V → W , we get a map
Λn(A) : Λn(V ) → Λn(W ), and since Λn(V ) ' R by the previous lemma,
Λn(A) is multiplication by a scalar. Show that this scalar is detA.
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Appendix B: Professor Lerman’s Words of Wisdom

–“I have this theory that if I do things slower, you might be able to follow
me.”
–“On the one hand, I’m not assuming that you know any point-set topology,
but on the other hand, I’m going over it so fast that you can’t possibly learn
it.”
–“The faster I go, the faster you should learn.”
–“If there is any justice in the world, this should be true.”
–“There is no justice in the world...you have to be a professor in order to
use the justice argument.”
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