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TO THE INSTRUCTOR

The attributes and philosophy of this book are best described by giving a
running synopsis of each of the six chapters. This summary is accompanied by
open expressions of my pedagogical preferences. Like most authors, I tend to
regard these not as idiosyncrasies, but as the only reasonable way to do things!
If you disagree in spots, I hope you will attribute this lack of modesty to an excess of
enthusiasm, an occupational hazard of those with the effrontery to write books.

The contents of Chapter 1 are often called "precalculus," and are in fact just
what that term implies, namely, material that ought to be at one's mathematical
fingertips before attempting the study of calculus proper. Opinions differ as to what
such a background chapter should contain. Some authors cannot wait to get on with
the main show, even at the risk of talking about derivatives to students who are still
struggling with straight lines, while others seem unwilling to venture into the heart-
land of calculus without a year's supply of mathematical rations. I have tried to
strike a happy medium by travelling light, but well-equipped. Thus there is a brief
section on sets, a larger one on numbers, a little bit on mathematical induction, and
quite a lot on inequalities and absolute values, two topics that always seem to give
students trouble despite their precalculus character. There is a whole section on
intervals, both finite and infinite. The last three sections of the chapter administer
a modest dose of analytic geometry, with the emphasis on straight lines and their
equations. It should not take long to bring all the students up to the mathematical
level of Chapter 1, regardless of their starting points, and those few who are there
already can spend their spare time solving extra problems while the others catch up!

The class is now ready to attack Chapter 2, and with it the study of differential
calculus. The chapter begins with a rather leisurely and entirely concrete discus-
sion of the function concept. It is my belief that many books adopt too abstract an
approach to this important subject. Thus I do not hesitate to use terms like "vari-
able" and "argument," which some may regard as old-fashioned, relegating the
mapping and ordered pair definitions of function to the problems. At the same
time, I find this a natural juncture to say a few words about functions of several
variables. After all, why should one have to wait until the very end ofthe book to
write a simple equation like F(x, y) = O?And what's wrong with a few examples of
nonnumerical functions, which crop up all the time in the social sciences? While
still in the first three sections of Chapter 2, the student encounters one-to-one func-
tions and inverse functions, and then composite functions and sequences after
specializing to numerical functions of a single variable. Graphs of equations and
functions are treated in terms of solution sets, with due regard for parity offunc-
tions and its consequences for the symmetry of their graphs.

Having mastered the concept of function, in all its various manifestations,
the student now arrives at Sec. 2.4, where derivatives and limits are introduced
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vi To the Instructor

simultaneously. I am of the opinion that the novice can hardly develop any re-
spect for the machinery of limits, without first being told that limits are needed to
define derivatives. Here the development of the individual's understanding must
recapitulate the actual historical evolution of the subject. For the same reason, I
feel that no time should be wasted in getting down to such brass tacks as difference
quotients, rates of change, and increments. Moreover, after defining the tangent to
a curve, I find it desirable to immediately say something about differentials. This is
a small price to pay for the ability to motivate the ubiquitous "d notation," and
differentials have many other uses too (for example, in Sees. 4.6 and 6.2).

It is now time for the student to learn more about limits. This is done in Sec.
2.6, where a number of topics are presented in quick order, namely, algebraic
operations on limits, one-sided limits, the key concept of continuity, algebraic
operations on continuous functions, and the fact that differentiability implies con-
tinuity. Armed with this information, one can now become a minor expert on dif-
ferentiation, by mastering the material in Sees. 2.7 and 2.8. After establishing the
basic differentiation formula (xT)' = rxT

-
1 for r a positive or negative integer, I

authorize the student to make free use of the same formula for r an arbitrary real
number. Why waste time justifying special cases when the "master formula" itself
will be proved once and for all in Sec. 4.4? (However, in a concession to tradition,
the validity of the formula for r a rational number is established in the problems,
in the usual two ways.) Following a brief discussion of higher derivatives, the
student arrives next at the rule for differentiating an inverse function and the all-
important chain rule. Unlike most authors, I use a proof of the chain rule which com-
pletely avoids the spurious difficulty stemming from the possibility of a vanishing
denominator, and which has the additional merit of generalizing at once to the case
of functions of several variables (see Sec. 6.3). The method of implicit differentia-
tion is treated as a corollary of the chain rule, and I do not neglect to discuss what
can go wrong with the method if it is applied blindly. Chapter 2, admittedly a long
one, closes with a comprehensive but concise treatment of limits of other kinds,
namely, limits involving infinity, asymptotes, the limit of an infinite sequence, and
the sum of an infinite series. Once having grasped the concept of the limit of afunc-
tion at a point, the student should have little further difficulty in assimilating these
variants 'of the limit concept, and this seems to me the logical place to introduce
them.

In Chapter 3 differentiation is used as a tool, and the book takes a more prac-
tical turn. I feel that the concept of velocity merits a section of its own, as do related
rates and the concept of marginality in economic theory. It is then time to say more
about the properties of continuous functions and of differentiable functions, and I
do so in that order since the student is by now well aware that continuity is a weaker
requirement than differentiability. The highly plausible fact that a continuous image
of a closed interval is itself a closed interval leads to a quick proof of the existence
of global extrema for a continuous function defined in a closed interval, with the
intermediate value theorem as an immediate consequence. The connection be-
tween the sign of the derivative of a function at a point and its behavior in a neigh-
borhood of the point is then used to prove Rolle's theorem and the mean value
theorem, in turn. With the mean value theorem now available, I immediately ex-
ploit the opportunity to, introduce the antiderivative and the indefinite integral,
which will soon be needed to do integral calculus.

The chapter goes on to treat local extrema, including the case where the func-
tion under investigation may fail to be differentiable at certain points. Both the
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first and second derivative tests for a strict local extremum are proved in a straight-
forward way, with the help of the mean value theorem. The next section, on con-
cavity and inflection points, is somewhat of an innovation, in that it develops a
complete parallelism between the theory of monotonic functions and critical points,
on the one hand, and the theory of concave functions and inflection points, on the
other. The chapter ends with a discussion of concrete optimization problems, and
the three solved examples in Sec. 3.8 are deliberately chosen to be nontrivial, so
that the student can have a taste of the "real thing."

. It is now Chapter 4, and high time for integral calculus. Here I prefer to use
the standard definition of the Riemann integral, allowing the points gt figuring in
the approximating sum (J to be arbitrary points of their respective subintervals.
Students seem to find this definition perfectly plausible, in view of the interpretation
of (J as an approximation to the area under the graph of the given function. Once the
definite integral is defined, it is immediately emphasized that all continuous func-
tions are integrable, and this fact is henceforth used freely. After establishing a few
elementary properties of definite integrals, I prove the mean value theorem for
integrals and interpret it geometrically. It is then a simple matter to prove the funda-
mental theorem of calculus. Next the function lnx is defined as an integral, in the
usual way, and its properties and those of its inverse function eX are systematically
explored. The related functions logax, aX and xT are treated on the spot, and the
validity of the formula (xT)' = rxT-1 for arbitrary real r is finally proved, as promised
back in Chapter 2. The two main techniques of integration, namely, integration by
substitution and integration by parts, are discussed in detail. The chapter ends
with a treatment of improper integrals, both those in which the interval of integra-
tion is infinite and those in which the integrand becomes infinite.

There are various ways in which integration can be used as a tool, but foremost
among these is certainly the use of integration to solve differential equations. It
is for this reason that I have made Chapter 5 into a brief introduction to differential
equations and their applications. All the theory needed for our purposes is de-
veloped in Sec. 5.1, both for first-order and second-order equations. The next sec-
tion is then devoted to problems of growth and decay, a subject governed by simple
first-order differential equations. The standard examples of population growth,
both unrestricted and restricted, are gone into in some detail, as is the topic of
radioactive decay. The last section of this short chapter is devoted to problems of
motion, where second-order differential equations now hold sway. Inclusion of
this material may be regarded as controversial in a book like this, but I for one do
not see anything unreasonable in asking even a business or economics student to
devote a few hours to the contemplation of Newton's mechanics, a thought system
which gave birth first to modern industrial society and then to the space age. In any
event, those who for one reason or another still wish to skip Sec. 5.3 hardly need my
permission to do so.

The last of the six chapters of this book is devoted to the differential calculus
offunctions of several variables. Here my intent is to highlight the similarities with
the one-dimensional case, while not neglecting significant differences. For example,
this is why I feel compelled to say a few words about the distinction between dif-
ferentiable functions of several variables and those that merely have partial deriva-
tives. However, I do not dwell on such matters. It turns out that much of the theory
of Chapters 2 and 3 can be generalized almost effortlessly to the n-dimensional
case, without doing violence to the elementary character of the book. In particular,
as already noted, the proof of the chain rule in Sec. 6.3 is virtually the same as the
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one in Sec. 2.8. Chapter 6 closes with a concise treatment of extrema in n dimen-
sions, including the test for strict local extrema and the use of Lagrange multipliers
to solve optimization problems subject to constraints. I stop here, because unlike
some authors I see no point in reproducing the standard examples involving indif-
ference curves, budget lines, marginal rates of substitution, and the like, to be
found in every book on microeconomic theory. I conceive of this book as one
dealing primarily with the common mathematical ground on which many subjects
rest, and the applications chosen here are ones which shed most light on the kind of
mathematics we are trying to do, not those which are most intriguing from other
points of view.

The idea of writing this book in the first place was proposed to me by John S.
Snyder, Jr. of the W. B. Saunders Co. Without his abiding concern, I find it hard to
imagine that the book would ever have arrived at its present form. In accomplishing
a total overhaul of an earlier draft, I was guided by helpful suggestions from a whole
battery of reviewers, notably, Craig Comstock ofthe Naval Postgraduate School,
John A. Pfaltzgraff of the University of North Carolina, J. H. Curtiss of the Uni-
versity of Miami, Carl M. Bruns of Florissant Valley Community College, David
Brown of the University of Pittsburgh, and Maurice Beren of the Lowell Tech-
nological Institute. The last of these reviewers played a particularly significant
role in my revision of Chapter 1. I would also like to thank my friend Neal Zierler
for checking all the answers to the problems in the first draft of the book, and my
copy-editor Lloyd Black for his patience in dealing with the kind of author who
keeps reading proof, looking for trouble, until it is finally taken away from him
once and for all. It has been a pleasure to work with all these fine people.



TO THE STUDENT

. Calculus cannot be learned without solving lots of problems. Your instructor
will undoubtedly assign you many problems as homework, probably from among
those that do not appear in the Selected Hints and Answers section at the end of the
book. But, at the same time, every hint or answer in that section challenges you to
solve the corresponding problem, whether it has been assigned or not. This is the
only way that you can be sure of your command of the subject. Problems marked
with stars are either a bit harder than the others, or else they deal with side issues.
However, there is no reason to shun these problems. They're neither that hard nor
that far off the main track.

The system of cross references'used in this book is almost self-explanatory.
For example, Theorem 1.48 refers to the one and only theorem in Sec. 1.48, Exam-
ple 2.43b refers to the one and only example in Sec. 2.43b, and so on. Any problem
cited without a further address will be found at the end of the section where it is
mentioned. The book has a particularly complete index to help you find your way
around. Use it freely.

Mathematics books are not novels, and you will often have to read the same
passage over and over again before you grasp its meaning. Don't let this discourage
you. With a little patience and fortitude, you too will be doing calculus before long.
Good luck!
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Chapter 1

MATHEMATICAL
BACKGROUND

1.1 INTRODUCTORY REMARKS

1.11. You are about to begin the study of calculus, a branch of mathematics
which dates back to the seventeenth century, when it was invented by Newton and
Leibniz independently and more or less simultaneously. At first, you will be exposed
to ideas that you may find strange and abstract, and that may not seem to have very
much to do with the "real world." After a while, though, more and more applica-
tions of these ideas will put in an appearance, until you finally come to appreciate
just how powerful a tool calculus is for solving a host of practical problems in fields
as diverse as physics, biology and economics, just to mention a few.

Why this delay? Why can't we juSt jump in feet first, and start solving practical
problems right away? Why must the initial steps be so methodical and careful?

The reason is not hard to find, and it is a good one. You are in effect learning
a new language, and you must know the meaning of key words and terms before
trying to write your first story in this language, that is, before solving your first
nonroutine problem. Many of the concepts of calculus are unfamiliar, and were
introduced, somewhat reluctantly, only after it gradually dawned on mathematicians
that they were in fact indispensable. This is certainly true of the central concept of
calculus, namely, the notion of a "limit," which has been fully understood only for
a hundred years or so, after having eluded mathematicians for millennia. Living as
we do in the modern computer age, we can hardly expect to learn calculus in archaic
languages, like that of "infinitesimals," once so popular. We must also build up a
certain amount of computational facility, especially as involves inequalities, before
we are equipped to tackle the more exciting problems of calculus. And we must
become accustom'ed to think both algebraically and geometrically at the same time,
with the help of rectangular coordinate systems. All this "tooling up" takes time, but
nowhere near as much as in other fields, like music, with its endless scales and ex-
ercises. After all, in calculus we need only train our minds, not our hands!

It is also necessary to maintain a certain generality in the beginning, especially
in connection with the notion of a "function." The power of calculus is intimately
related to its great generality. This is why so many different kinds of problems can
be solved by the methods of calculus. For example, calculus deals with "rates of
change" in general, and not just special kinds of rates of change, like "'Velocity,"
"marginal cost" and "rate of cooling," to mention only three. From the calculus

1



2 Mathematical Background Chap. 1

point of view, there are often deep similarities between things that appear super-
ficially unrelated.

In working through this book, you must always have your pen and scratch
pad at your side, prepared to make a little calculation or draw a rough figure at a
moment's notice. Never go on to a new idea without understanding the old ideas
on which it is based. For example, don't try to do problems involving "continuity"
without having mastered the idea of a "limit." This is really a workshop course, and
your only objective is to learn how to solve calculus problems. Think of an art
class, where there is no premium on anything except making good drawings. That
will put you in the right frame of mind from the start.

1.12. Two key problems. Broadly speaking, calculus is the mathematics of
change. Among the many problems it deals with, two playa particularly prominent
role, in ways that will become clearer to you the more calculus you learn. One
problem is

(1) Given a relationship between two changing quantities, what is the rate of
change of one quantity with respect to the other?

And the other, so-called "converse" problem is

(2) Given the rate of change of one quantity with respect to another, what is
the relationship between the two quantities?

Thus, from the very outset, we must develop a language in which "relationships,"
whatever they are, can be expressed precisely, and in which "rates of change" can
be defined and calculated. This leads us straight to the basic notions of "function"
and "derivative." In the same way, the second problem leflds us to the equally basic
notions of "integral" and "differential equation." It is the last concept, of an equa-
tion involving "rates of change," that unleashes the full power of calculus. You
might think of it as "Ntwton's breakthrough," which enabled him to derive the laws
of planetary motion from a simple differential equation involving the force of gravita-
tion. Why does an apple fall?

We will get to most of these matters with all deliberate speed. But we must
first spend a few sections reviewing that part of elementary mathematics which is an
indispensable background to calculus. Admittedly, this is not the glamorous part of
our subject, but first things first! We must all stand on some common ground. Let
us begin, then, from a starting point where nothing is assumed other than some
elementary algebra and geometry, and a little patience.

1.2 SETS

A little set language goes a long way in simplifying the study of calculus.
However, like many good things, sets should be used sparingly and only when the
occasion really calls for them.

1.21. A collection of objects of any kind is called a set, and the objects them-
selves are called elements ofthe set. In mathematics the elements are usually numbers
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or symbols. Sets are often denoted by capital letters and their elements by small
letters. If x is an element of a set A, we may write x E A, where the symbol E is read
"is an element of." Other ways of reading x E A are "x is a member of A," "x belongs
to A," and "A contains x." For example, the set of all Portuguese-speaking countries
in Latin America contains a single element, namely Brazil.

1.22. If every element of a set A is also an element of a set B, we write A c B,
which reads "A is a subset of B." If A is a subset of B, but B is not a subset of A, we
say that A is a proper subset of B. In simple language, this means that B not only
contains all the elements of A, but also one or more extra elements. For example,
the set of all U.S. Senators is a proper subset of the set of all members of the U.S.
Congress.

1.23. a. One way of describing a set is to write its elements between curly
brackets. Thus the set {a,b, c} is made up of the elements a, band c. Changing the
order of the elements does not change the set. For example, the set {b, c, a} is the
same as {a, b, c}. Repeating an element does not change a set. For example, the set
{a,a,b,c,c} is the same as {a,b,c}.

b. We can also describe a set by giving properties that uniquely determine its
elements, often using the colon: as an abbreviation for the words "such that." For
example, the set {x: x = x2} is the set of all numbers x which equal their own
squares. You can easily convince yourself that this set contains only two elements,
namely G and 1.

1.24. Union of two sets. The set of all elements belonging to at least one of
two given sets A and B is called the union of A and B. In other words, the uni(;m
of A and B is made up of all the elements which are in the set A or in the set B, or
possibly in both. We write the union of A and B as A u B, which is often read
"A cup B," because of the shape of the symbol u. For example, if A is the set {a, b, c}
and B is the set {c,d, e}, then A u B is the set {a,b, c,d, e}.

1.25. Intersection of two sets. The set of all elements belonging to both of two
given sets A and B is called the intersection of A and B. In other words, the inter-
sectio{l of A and B is made up of only those elements of the sets A and B which are
in both sets; elements which belong to only one of the sets A and B do not belong
to the intersection of A and B. We write the intersection of A and B as A n B, which
is often read "A cap B," because of the shape of the symbol n. For example, if A is
the set {a,b,c,d} and B is the set {b,d, e,f,g}, then A n B is the set {b,d}.

1.26. Empty sets. A set which has no elements at all is said to be an empty set
and is denoted by ~he symbol 0. For example, the set of unicorns in the Bronx Zoo
is empty.

By definition, an empty set is considered to be a subset of every set. This is just
a mathematical convenience.

1.27. Equality of sets. We say that two sets A and B are equal and we write
A = B if :A and B have the same elements. If A is empty, we write A = 0. For
example, {x: x = x2} = {G, I}, as already noted, while {x: x t= x} = 0 since no
number x fails to equal itself!
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PROBLEMS

Chap. 1

1. Find all the proper subsets of the set {a, b, c}.
2. Write each of the following sets in another way, by listing elements:

(a) {x: x = -x}; (b) {x: x + 3 = 8}; (c). {x: x2 = 9};
(d) {x: x2

- 5x + 6 = O}; (e) {x: x is a letter in the word "calculus"}.
3. LetA = {1,2,{3},{4,5}}. Which of the following are true?

(a) lEA; (b) 3EA; (c) {2}EA.
How many elements does A have?

4. Which of the following are true?
(a) IrA = B, then A c BandB c A; (b) IrA c BandB c A, then A = B;
(c) {x: x E A} = A; (d) {all men over 80 years old} = 0.

5. Find the union of the sets A and B if
(a) A = {a,b,d,~ = {a,b,c,d}; (b) A = {1,2,3,4},B = {-1,0,2,3}.

6. Find the intersection of the sets A and B if
(a) A = {1,2,3,4}, B = {3,4,5,6}; (b) A = {a,b,c,d}, B = {f,g,h}.

7. Given any set A, verify that A u A = A n A = A.
8. Given any two sets A and B, verify that both A and B a.re subsets of A u B,

while A n B is a subset of both A and B.
9. Given any two sets A and B, verify that A n B is always a subset of A u B.

Can A n B ever equal A u B?
10. Given any two sets A and B, by the difference A - B we mean the set of all

elements which belong to A but not to B. Let A = {I, 2, 3}. Find A - B if
(a) B = {1,2}; (b) B = {4,5}; (c) B = 0; (d) B = {1,2,3}.

11. Which of the following sets are empty?
(a) {x: x is a letter before c in the alphabet};
(b) {x: x is a letter after z in the alphabet};
(c) {x: x + 7 = 7};
(d) {x: x2 = 9 and 2x = 4}.

*12. Which of the following sets are empty?
(a) The set of all right triangles whose side lengths are whole numbers;
(b) The set of all right triangles with side lengths in the ratio 5:12:13;
(c) The set of all regular polygons with an interior angle of 45 degrees;
(d) The set of all regular polygons with an interior angle of 90 degrees;.
(e) The set of all regular polygons with an interior angle of 100 degrees.
Explain your reasoning.

Comment. A polygon is said to be regular if all its sides have the same
length and all its interior angles are equal.

*13. Let A = {a, b, c, d}, and let B be the set of all subsets of A. How many elements
does B have?

1.3 NUMBERS

In this section we discuss numbers of various kinds, beginning with integers and
rational numbers and moving on to irrational numbers and real numbers. The set
of all real numbers is called the real number system. It is the number system needed
to carry out the calculations called for in calculus.

1.31. The number line. Suppose we construct a straight line L through a point
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o and extend it indefinitely in both directions. Selecting an arbitrary unit of mea-
surement, we mark off on the line to the right of 0 first 1 unit, then 2 units, 3 units,
and so on. Next we do the same thing to the left of O. The marks to the right of
o correspond to the positive integers 1, 2, 3, and so on, and the marks to the left
of 0 correspond to the negative integers -1, - 2, - 3, and so on. The line L,
"calibrated" by these marks, is called the number line, and the point 0 is called the
origin (of L). The direction from negative to positive numbers along L is called the
positive direction, and is indicated by the arrowhead in Figure 1.

1.32. Integers

a. The set of positive integers is said to be closed under the operations of
addition and multiplication. In simple language, this means that if we add or multi-
ply two positive integers, we always get another positive integer. For example,
2 + 3 = 5 and 2 . 3 = 6, where 5 and 6 are positive integers. On the other hand, the
set of positive integers is not closed under subtraction. For example, 2 - 3 = -1,
where -1 is a negative integer, rather than a positive integer.

The number 0 corresponding to the point 0 in Figure 1 is called zero. It can be
regarded as an integer which is neither positive nor negative. Following mathematical
tradition, we use the letter Z to denote the set of all integers, positive, neg~tive and zero.
The set Z, unlike the set of positive integers, is closed under subtraction. For example,
4 - 2 = 2, 3 - 3 = 0 and 2 - 5 = - 3, where the numbers 2, 0 and - 3 are all
integers, whether positive, negative or zero.

b. An integer n is said to be an even number if n = 2k, where k is another
integer, that is, if n is divisible by 2. On the other hand, an integer n is said to be
an odd number if n = 2k + 1, where k is another integer, that is, if n is not divisible
by 2, or equivalently leaves the remainder 1 when divided by 2. It is clear that every
integer is either an even number or an odd number.

1.33. Rational numbers. The set Z is still too small from the standpoint of
someone who wants to be able to divide any number in Z by any other number
in Z and still be sure of getting a number in Z. In other words, the set Z is not closed
under division. For example, 2 .;- 3 = ! and -4.;- 3 = -!, where! and -~ are
fractions, not integers. Of course, the quotient of two integers is sometimes an integer,
and this fact is a major preoccupation of the branch of mathematics known as number
. theory. For example, 8 .;- 4 = 2 and 10 .;- - 5 = - 2. However, to make division
possible in general, we need a bigger set of numbers than Z. Thus we introduce
rational numbers, namely fractions of the form min, where m and n are both integers
and n is not zero. Note that every integer m, including zero, is a rational number,
since mil = m.

Let Q (for "quotient") denote the set of all rational numbers. Then the set Q
is closed under the four basic arithmetical operations of addition, subtraction, multi-
plication and division, provided that we never divide by zero. It cannot be emphasized
too strongly that division by zero is a forbidden operation in this course. These
matters are 'considered further in Problems 3 and 13.
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a. With respect to the number line, the rational numbers fill up the points
corresponding to the integers and many but not all of the points in between. In
other words, there are points of the number line which do not correspond to rational
numbers. To see this, suppose we construct a right triangle PP'O with sides PP' and
P'O of lenfth 1, as in Figure 2A. Then, by elementary geometry, the side OP is of
length .Jl + 12 = J2 (use the familiar Pythagorean theorem). Suppose we place
the side OP on the number line, as in Figure 2B, with the point 0 coinciding with the
origin of the line. Then the point P corresponds to the number J2. But, as mathe-
maticians concluded long ago, the number J2 cannot be rational, and therefore P
is a point of the number line which does not correspond to a rational number.

b. By an irrational number we simply mean a number, like J2, which is not
rational. To demonstrate that J2 is irrational, we argue as follows. First we digress
for a moment to show that the result of squaring an odd number (Sec. 1.32b) is
always an odd number. In fact, every odd number is of the form 2k + 1, where k
is an integer, and, conversely, every number of this form is odd. But, squaring the
expression 2k + 1, we get

(2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

which is odd, since 2k2 + 2k is itself an integer (why?).
Now, returning to the main argument, suppose J2 is a rational number. Then

J2 must be of the form min, where m and n are positive integers and we can assume
that the fraction min has been reduced to lowest terms, so that m and n are no longer
divisible by a common factor other than 1. (For example, the fraction H is not in
lowest terms, but the -equivalent fraction iis.) We can then write

Squaring both sides of (1), we have

or equivalently

J2 =~.
n

(1)

(2)

Thus m2 is an even number, being divisible by 2, and therefore the number m itself
must be even, since if m were odd, m2 would also be odd, as shown in the preceding
paragraph. Since m is even, we can write m in the form

m = 2k, (3)
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where k is a positive integer. Squaring both sides of (3), we have

m2 = 4k2.

Substituting (4) into (2), we get

or equivalently

Numbers 7

(4)

But then n2 is an even number, and hence so is n, for the reason just given in con-
nection with m2 and m.

Thus we have managed to show that m and n are both even numbers. Therefore
m and n are both divisible by 2. But this contradicts the original assumption that
the fraction min has been reduced to lowest terms. Since we run into a contradiction
if we assume that J2 is a rational number, we must conclude that J2 is an irrational
number. This fact was known to the ancient Greeks, who proved it in just the same
way.

c. There are many other irrational numbers. For example, the square roots
J3, J5 and J7 are all irrational, and so is 'It, the ratio of the circumference of a
circle to its diameter. For convenience, we use the letter I to designate the set of all
irrational numbers.

1.35. The real number system. Let R be the set made up of Q, the set of
all rational numbers, and I, the set of all irrational numbers. In other words, 'let
R be the union of Q and I, in the language of sets. Thus

R=QuI

in symbolic notation (Sec. 1.24). The set R is called the real number system, and its
elements are called the real numbers. From now on, when we use the word "number"
without further qualification, we will always mean a real number.

1.36. Properties of the real numbers

Next we list several useful facts about real numbers. The student who finds
these things interesting is encouraged to pursue them further by visiting the library
and looking up a more detailed treatment of the subject.

a. There is one and only one point on the number line corresponding to any
given real number, and, conversely, there is one and only one real number cor-
responding to any given point on the number line. For this reason, the nu~ber
line is often called the real line. In mathematical language, we say that there is a
one-to-one correspondence between the real numbers and the points of the real line,
or between the real number system and the real line itself.

b. Let N be any positive integer, no matter how large. Then between any two
distinct real numbers there are N other real numbers. Since N is as large as we
please, this can be expressed mathematically by saying that between any two distinct
real numbers there are arbitrarily many real numbers, or better still, infinitely many
real numbers. In view of the one-to-one correspondence between the real numbers
and the points of the real line, this fact is geometrically obvious, since between any
two distinct points of the real line we can clearly pick as many other points as we
please.
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c. If a rational number is expressed in decimal form, the decimal either ter-
minates in some digit from 1 to 9 or else the decimal does not terminate, but con-
tinues indefinitely with groups of repeated digits after a certain decimal place. For
example, the rational numbers t, t, k. /0 and ft are represented by the terminating
decimals 0.5, 0.2, 0.125, 0.1 and 0.0625, respectively, while the rational numbers to
!and t are represented by the repeating decimals 0.3333 ... = 0."3",0.1666... = 0.16
and 0.142857142857 ... = 0.142857. Here the dots ... mean "and so on forever,"
and the digits written beneath the horizontal line repeat over and over again. Actually,
a terminating decimal can be regarded as a special kind of repeating decimal, namely,
one with an endless run of zeros after a certain decimal place. Thus 0.125 = 0.1250,
0.0625 = 0.06250, and so on.

d. Conversely, if a number in decimal form is a repeating decimal (which
includes the case of a terminating decimal), then the number is a rational number,
and it can be put in the form of a fraction min.

e. If an irrational number is expressed in decimal form, the decimal does not
terminate, but continues indefinitely with no groups of repeated digits. For example,
J2 = 1.414213562373 ... , where the dots ... again mean "and so on forever," but
this time with no groups of repeated digits. Conversely, if a number in decimal form
is this kind of nonrepeating decimal, then the number is an irrational number.

f. It follows from the foregoing that there is a one-to-one correspondence
between the real number system and the set of all decimals, repeating and non-
repeating.

1.37. Mathematical induction

a. In mathematics we often encounter assertions or formulas involving an
arbitrary positive integer n. As an example, consider the formula

1 + 3 + 5 ... + (2n - 1) = n2, (5)

which asserts that the sum of the first n odd integers equals the square of n. Here
the dots ... indicate the missing terms, if any, and it is understood that the left side
of(5) reduces to simply 1 ifn = 1,1 + 3 ifn = 2, and 1 + r+ 5 ifn = 3. To prove
a formula like (5), we can use the following important technique, known as the
principle of mathematical induction. Suppose that the formula (or assertion) is known
to be true for n = 1, and suppose that as a result of assuming that it is true for n = k,
where k is an arbitrary positive integer, we can prove that it is also true for n = k + 1.
Then the formula is true for all k.

The reason why mathematical induction works is perfectly clear: First we
choose k = 1 and use the truth of the formula n = k = 1 to deduce its truth for
n = k + 1 = 2. This shows that the formula is true for n = 2. Playing the same
game again, we now choose k = 2 and use the truth of the formula for n = k = 2
to deduce its truth for n = k + 1 = 3. Doing this over and over again, we can
prove the truth of the formula for every positive integer n, no matter how large.

b. Thus, to prove formula (5), we first note that (5) is certainly true for n = 1,
since it then reduces to the trivial assertion that

1 = 12•

Suppose (5) holds for n = k, so that we have

1 + 3 + 5 + ... + (2k - 1) = k2• (6)
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Then, adding 2k + 1 to both sides of (6), where 2k + 1 is the next odd number
after 2k - 1, we get

1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = k2 + 2k + 1. (7)

The expression on the right clearly equals (k + 1)2, so that (7) takes the form

1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = (k + 1)2.

But this is just the form taken by (5) if n = k + 1, since then

2n - 1 = 2(k + 1) - 1 = 2k + 1.

In this way, we have shown that if (5) is true for n = k, it is also necessarily true
for n = k + 1. Therefore, by the principle of mathematical induction, (5) is true
for all n starting from n = 1.

c. The truth of the assertion for n = 1 is only needed to "get the induction
started." This condition can be relaxed. For example, to give a rather wild example,
suppose the assertion is known to be true for n = 8, and suppose its truth for n = k
implies its truth for n = k + 1. Then the assertion is true for all n = 8, 9, ... , that
is, for "all n starting from 8. This is actually the situation in Problem 20.

PROBLEMS

1. Is the set of negative integers closed under the operation of addition? Give
numerical examples to show that the set of negative integers is not closed under
the operations of subtraction, multiplication and division.

2. Give numerical examples to show that
(a) The sum of two rational numbers is a rational number;
(b) The difference of two rational numbers is a rational number;
(c) The product of two rational numbers is a rational number;
(d) The quotient of two rational numbers is a rational number.

3. Show algebraically that the set of rational numbers is closed under the operation
of addition. Do the same for the operations of subtraction, multiplication and
division.

4. Which of the following exist?
(a) A largest positive integer;
(b) A smallest positive integer;
(c) A largest positive integer less than 100;
(d) A smallest positive integer greater than 100.

5. Is the number 1 - J2 rational or irrational? Explain your answer.
6. Give an example to show that the sum of two irrational numbers can be a

rational number. How about the difference of two irrational numbers?
7. Give an example to show that the product of two irrational numbers can be

a rational number. How about the quotient of two irrational numbers?
8. What conclusions can you draw from Problems 6 and 7 about whether or not

the set of irrational numbers is closed under the operations of addition, sub-
traction, multiplication and division?

9. Prove that 0 . c = 0 for every real number c.
10. Give examples other than those in the text of rational numbers which terminate

when expressed in decimal form.
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11. Give examples other than those in the text of rational numbers which continue
indefinitely with groups of repeated digits when expressed in decimal form.

12. Use mathematical induction to prove that

1 + 2 + 3 + ... + n = _n(_n_+_l)
2

for all n = 1, 2, ...
13. Let a be any real number, possibly zero. Why is the expression a/O meaningless?

In other words, why is division by zero impossible?
Comment. On the other hand, if a #- 0, then O/a is a perfectly respectable

number, equal to O.
14. It can be shown (Sec. 1.4, Prob. 12) that between any two rational numbers

there is another rational number. Illustrate this statement by inserting another
rational number between -No and -MMo.

*15. Verify that! + i = t by adding the corresponding decimals. What conclusions
can you draw from this about any decimal with an endless run of nines after a
certain decimal place?

*16. Which rational number (in lowest terms) is expressed by the following repeating
decimal?
(a) 0.919"; (b) O.TI; (c) 1.2TI; (d) -O.m.

*17. Explain why a rational number, when expressed in decimal form, either ter-
minates or continues indefinitely with groups of repeated digits.

*18. It can be shown (Sec. 1.5, Prob. 13) that between any two irrational numbers
there is another irrational number. Illustrate this statement by inserting another
irrational number between J2 = 1.414213562 ... and 1.414215784. . . .

*19. Use mathematical induction to prove that

2n3 + 3n2 + n12 + 22 + 32 + ... + n2 = -----
6

for all n = 1, 2, ...
*20. Verify that every integer greater than seven can be written as a sum made

up of threes and fives exclusively. For example, 8 = 3 + 5, 9 = 3 + 3 + 3,
10 = 5 + 5. 11 = 3 + 3 + 5, and so on.

1.4 INEQUALITIES

1.41. Let a and b be any two numbers. Then there are only three, mutually
exclusive possibilities:

(1) Either a equals b, written a = b;
(2) Or a is greater than b, written a > b;
(3) Or a is less than b, written a < b.

On the real line, a > b simply means that the point corresponding to the number
a lies to the right ofthe point corresponding to the number b, or, in simpler language,
that "the point a" lies to the right of "the point b" (Sec. 1.56). Similarly, a < b means
that the point a lies to the left of the point b. Note that a > band b < a mean exactly
the same thing, and so do a < band b > a.
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Another way of saying that a is greater than b is to say that if b is subtracted
from a, we get a positive number, that is, a number greater than zero, while if a is
subtracted from b,we get a negative number, that is, a number less than zero. In other
words, a > b, a - b > 0 and b - a < 0 all mean exactly the same thing, and simi-
larly, so do a < b, b - a > 0 and a - b < O. We regard it as a known fact that if
a and b are both positive numbers, then so are the sum a + b and the product abo

Formulas involving the symbols > and < (or the symbols ~ and ~ to be
introduced in Sec. 1.47) are called inequalities. There are several theorems about
inequalities which are both intuitively reasonable and very easy to prove. We now
prove some of these which are particularly useful.

1.42. THEOREM. Adding the same number to each side of an inequality does
not change the sense of the inequality. That is,

If a > b, then a + e > b + e,

where e is any number at all, while

If a < b, then a + e < b + e.

(1)

(1')

Proof. To prove (1), we need only show that (a + c) - (b + c) > 0, which
means exactly the same thing as a + e > b + e. But

~+~_~+~=~-~+~-~=~-~+O=a-b>~

since a > b. The proof of (1') is just as easy, and is left as an exercise. 0
The symbol 0 is a modern way of indicating the end of a proof. The old-

fashioned way is "Q.E.D.," which you may recall from elementary geometry.

1.43. THEOREM. Multiplying both sides of an inequality by the same positive
number does not change the sense of the inequality. That is,

while

If a > band e > 0, then ae > be,

If a < band e > 0, then ae < be.

(2)

(2')

Proof. To prove (2), we need only show that ae - be > 0, which means
exactly the same thing as ae > be. But a - b is positive, since a > b, and e is positive,
by hypothesis. Therefore the product (a - b)e = ae - be is also positive, since the
product of two positive numbers is a positive number. Thus ae - be > 0, as required.
The proof of (2') is just as easy, and is left as an exercise. 0

1.44. THEOREM. Multiplying both sides of an inequality by the same negative
number changes the sense of the inequality. That is,

while

If a > band e < 0, then ae < be,

If a < band e < 0, then ae > be.

(3)

(3')

Proof. To prove (3), we need only show that ae - be < 0, which means
exactly the same thing as ae < be. But a ~ b is positive, since a > b, and e is negative,
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by hypothesis. Therefore the product (a - b)e = ae - be is negative, since the
product of a positive number and a negative number is a negative number. Thus
ae - be < 0, as required. The proofof(3') isjust as easy, and is left as an exercise. 0

1.45. THEOREM. If a > b and b > e, then.a > e.
Proof. By hypothesis, a - b > 0 and b - e > O. But then

(a - b) + (b - c) = a - e > 0,

since the sum of two positive numbers is positive. Alternatively, the theorem follows
at once by examining the relative positions of a, band e, regarded as points on the
real line (give the details). 0

1.46. THEOREM. Let a and b be positive numbers such that a > b. Then

1 1a < b'
Proof. To prove (4), we need only show that

1 1
b - a > O.

Writing

1 1 a b a-b
b - a = ab - ab = ~'

(4)

(5)

we note that a - b > 0, since a > b,while ab > 0, since a > 0 and b > O. It follows
that the expression on the right in (5) is positive, being the quotient of two positive
numbers. 0

1.47. In dealing with inequalities, it is a great convenience to introduce the
symbol ~, which means "is either greater than or equal to," and the symbol ~,
which means "is either less than or equal to." Thus a ~ b means "a is either greater
than or equal to b," while a ~ b means "a is either less than or equal to b." It is
possible for both inequalities a ~ b and a ~ b to be valid simultaneously, but only
if a is actually equal to b, since the three possibilities listed in Sec. 1.41 are mutually
exclusive. In other words, a ~ b and a ~ b together imply a = b.

Clearly a ~ b means exactly the same thing as a - b ~ 0, while a ~ b means
exactly the same thing as a - b ~ O.

1.48. Here is another theorem on inequalities, this time involving the symbol ~ ;
THEOREM. If a ~ band e ~ d, then

a + e ~ b + d. (6)

Proof. As just noted, a ~ b means exactly the same thing as a - b ~ 0, while
c ~ d means exactly the same thing as e - d ~ O. But the sum of two numbers
which are negative or zero is itself a number which is negative or zero. In other
words, the sum of two nonpositive numbers is a nonpositive number. It follows that

(a - b) + (e - d) = (a + c) - (b + d) ~ 0,

which means exactly the same thing as (6). 0
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. 1.49. Inequalities are often combined. For example, a ~ b > e means that
both inequalities a ~ band b > e hold simultaneously. Similarly, d < e :::;;f means
that both d < e and e :::;;f hold simultaneously. Thus we have

2 ~ J4 ~ 1, 2 ~ J4 > 1, 1 < Ji < 2, 1 < Ji :::;;2.
Give other examples involving the same numbers. Bear in mind that by JX, where
x is a positive number, we always mean the positive square root of x. Thus, for
example, J4 equals 2, never - 2.

PROBLEMS

1. Show that
(a) If a> b, then -a < -b;
(b) If a > band e > d, then a + e > b + d.

2. Given two unequal rational numbers p = min and p' = m'ln', written with
positive denominators (as is always possible), show that p > p' is equivalent
to mn' > m'n, while p < p' is equivalent to mn' < m'n.

3. Which is larger?
(a) Nor 13°; (b) - nor - 13°; (c) \607 or 13°.

4. Verify that if a > b > 0 and e > d > 0, then ae > bd > O.
5. Verify that if a > 0, b > 0 and b2 > a2, then b > a. Use this to confirm

that J3 > Ji.
6. Show that a2 > a if a > 1, while a2 < a if 0 < a < 1. When does a2 = a?
7. Verify that

M 1-1,,2 ~ 12 ~ 1~ -2- ~ 0 ~ - 3.

Write this in another way, using the symbol:::;; instead.
8. Show that

(a) If a ~ b, then-a ~ -b;
(b) If a ~ band b ~ e, then a ~ e;
(c) If a ~ band b > e or if a > band b ~ e, then a > c.

9. Verify that if a ~ band e > 0, then ae ~ be, while if a ~ band e < 0, then
ae ~ be.

10. Given a number x, the largest integer less than or equal to x is called the integral
part of x and is denoted by [x], not to be confused with {x}, the set whose only
element is x. Find
(a) [t]; (b) [1]; (c) [~]; (d) [Ji]; (e) [-t];
(f) [-Ji].

11. Let n be an integer. Find
(a) en]; (b) [n + t]; (c) [n - n

*12. Let p and q be two rational numbers such that p < q. Show that the number
t(p + q) is also rational and lies between p and q. Use this to show that there
is no largest rational number less than 1, and no smallest rational number
greater than O. Can we change the word "rational" to "real" here?

*13. Verify that
(a) a2 + b2 ~ 2ab; (b) (a + W ~ 4ab;

1
(c) If a > 0, then a + - ~ 2.a
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*14. The arithmetic mean of two positive numbers x and y is defined as

x+y
a =-2-

and the geometric mean as

g = JXY.
Verify that g < a unless x = y, in which case g = a.

*15. Use the preceding problem to show that of all rectangles with a given perimeter
(combined side length), the square has the greatest area.

1.5 THE ABSOLUTE VALUE

1.51. By the absolute value of a number x we mean the number which equals x
if x is nonnegative and - x if x is negative. If x is expressed in decimal form, then
the absolute value of x is just the decimal without its minus sign if it has one. The
absolute value of x is denoted by lxi, with two vertical lines (never with brackets).
In other words,

Ixl = { x ~f x ~ 0, (1)
-x If x < 0.

Thus, for example, /2.21 = 2.2, 1- 3.11 = -( - 3.1) = 3.1, 101= 0. Note that 1- xl=
Ixl for any number x. For example, 1-3.11 = 13.11= 3.1. :

and

1.52. THEOREM. The inequalities

-Ixl ~ x ~ Ixl (2)

Ix + yl ~ Ixl + Iyl (3)
hold for arbitrary numbers x and y.

Proof. To prove (2), we merely note that, by (1), x = Ixl if x ~ 0, while
x = -Ixl if x < 0. Therefore (2) holds in either case.

To prove (3), we write

-Iyl ~ y ~ Iyl. (4)

as well as (2). It then follows from Theorem 1.48, with a = x, b = lxi,c = y, d = Iyl,
that

x + y ~ Ixl + Iyl, (5)

and from the same theorem, this time with a = -lxi, b = x, c = -I yl, d = y, that
-Ixl - Iyl ~ x + y. (5')

But (5) and (5') together imply (3). In fact, if x + y ~ 0, then x + y = Ix + yl, so
that (5) is equivalent to (3), while if x + y < 0, then x + y = -Ix + yl, so that (5')
becomes -Ixl - Iyl ~ -Ix + yl, which is again equivalent to (3). 0

1.53. According to (3), the absolute value of the sum of any two numbers is
either less than or equal to the sum of the absolute values of the numbers. More
concisely, "the absolute value of a sum cannot exceed the sum of the absolute values."

!
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You should convince yourself by testing the various possibilities that (3) reduces to
the equality Ix + yl = IXI + Iyl when x and y have the same sign or at least one of
the numbers x and y is zero, and that (3) can be replaced by the "strict" inequality
Ix + yl < IxJ + Iyl when x and y have opposite signs. Formula (3) is often called
the "triangle inequality," for a reason we do not go into here.

1.54. The coordinate of a point on the realUne. As we have seen in Sec. 1.36a,
there is one and only one point on the real line corresponding to any given real
number, and, conversely, there is one and only one real number corresponding to
any given point on the real line. Thus, to specify a point P on the line, we need only
give the real number corresponding to P. This number is called the coordinate of P.

Let d be the distance between the origin 0, namely the point with coordinate
zero, and the point P. Then P has the coordinate d if P lies to the right of 0 (see
Figure 3A) and the coordinate -d if P lies to the left of 0 (see Figure 3B). If the
point P coincides with the origin 0, its distance from 0 is zero, and therefore so is
its coordinate.

o P
I--d--j
• •o d

A
Figure 3.

p 0
I--d---o1
• •-d 0

B

Conversely, suppose P has the coordinate x, where x is any real number. Theq
P is just the point at distance Ixl from 0, lying to the right of 0 if x is positive (see
Figure 4A) and to the left of 0 if x is negative (see Figure 4B). If x = 0, then P clearly
coincides with O.

o p
I--lxl--1
• •o x

A
Figure 4.

p 0
I--lxl--1
• •
x 0

B

1.55. The distance between two points on the realUne

THEOREM. Let PI and P2 be two points on the realline;:ith coordinates Xl and
X2, respectively, and let d be the distance between PI and P2. Then

d = IXI - x21. (6)

Proof. Let PI and P2 both lie to the right of the origin O. Then formula (6)
follows from Figure 5A if PI lies to the right of P 2, and from Figure 5B if PI lies

o
•

\:
A

Figure 5.

o
•

I:
B
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Figure 6.

Chap. 1

to the left of P2• On the other hand, if PI or P2 (or both) lies to the left of 0, as in
Figure 6, then we can replace 0 by a new origin 0', a distance c to the left of 0,
such that PI and P2 both lie to the right of 0'. With respect to the new origin 0',
the points PI and P2 have coordinates c + Xl and c + X2, as is apparent from the
figure, where the point PI lies to the left of 0 and the distance from 0' to PI equals
c - IxIi = c + Xl' Therefore, by the first part of the proof, we now have

d = I(c + Xl) - (c + xl)1 = I(c - c) + (Xl - x2)1 = IXI - x21,
so that formula (6) is still valid. 0

1.56. In talking about real numbers, we will make free use of geometrical
language whenever it seems appropriate. In particular, we will usually say "the
point x" instead of "the point with coordinate X." The distance between the points
PI and P2 will often be denoted by IPIP21, as suggested by the absolute value in (6).
The same "double vertical line notation" will also be used for the distance between
points in the plane and in space.

PROBLEMS
1. Verify that Ixyl = Ixllyl. ,

Comment. Thus "the absolute value of a product equals the product of the
absolute values."

2. Show that

I I - {2X if X ~ 0,
x+x-O'f 0

I X < .
3. Verify that IxI2 = x2 and Ixi = JX2 for every number x, regardless of the sign

of x.
4. Show that

IX + Y + zl ~ Ixi + Iyl + Izi
for arbitrary numbers x, y, z.

5. More generally, show that

IXI + X2 + ... + x.1 ~ IXII + /x21 + ... + Ix.1
for arbitrary numbers Xl, X2, ... , X •.

6. Which points are at distance 2 from the point -1?
7. Find the two points which are four times closer to the point -1 than to the

point 4.
8. When does the point x2 lie to the right of the point X? When does it lie to the

left? When do the two points coincide?
9. If PI and P2 are the points with coordinates Xl and X2, verify that the point

with coordinate t(XI + X2) is the midpoint of the segment PIP2.
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*10. Show that

Intervals and Neighborhoods

Ix - yl ~ Ilxl - Iyll

17

(1)

for arbitrary x and y. When does equality occur?
*11. Solve the equation

(a) \X-11=2; (b) Ix-11=13-x\; (c) Ix+1\=13+xl;
(d) 2xl = Ix - 21.
In other words, find the set of all numbers x satisfying the equation.

*12. What happens to the point (1 - x)a + xb as x varies from 0 to 1?
*13. Verify that between any two real numbers Xl and X2

(a) There is a rational number and an irrational number;
(b) There are infinitely many rational numbers and infinitely many irrational

numbers.

1.6 INTERVALS AND NEIGHBORHOODS

1.61. Intervals
a. Let a and b be any two real numbers such that a < b, and consider the set I

of all real numbers x such that x is greater than a but less than b. Then I is called
an open interval and is denoted by the symbol (a, b). Note that I does not include the
points x = a and x = b, called the end points ofthe interval. We can also denote (a, b)
by writing a < x < b, it being understood that a < x < b is shorthand for the
set I = (x: a < x < b}.

b. Suppose we enlarge the open interval (a, b) by including the end points
x = a and x = b. Then the resulting set is called a closed interval and is denoted
by the symbol [a, b], with square brackets instead of round brackets (parentheses).
Since [a, b] is clearly the set of all x such that x is greater than or equal to a but
less than or equal to b, we can also denote [a, b] by writing a ~ x ~ b, this being
shorthand for the set {x: a ~ x ~ b}.

c. Sometimes it is convenient to speak of intervals which include one end
point but not the other. Thus we have the interval [a, b), which includes the left end
point a but excludes the right end point b, or the interval (a, b], which includes the
right end point b but excludes the left end point a. Note the crucial difference be-
tween the meaning of a round bracket ( or ) and a square bracket [ or]. We can
also write [a, b) as a ~ x < band (a,b] as a < :x; ~ b. These intervals, which are
neither open nor closed, might be regarded as "half open," but they might just as
well be regarded as "half-closed." The intervals (a, b), [a,b], [a, b) and (a,b] are all
assigned the same length, namely b - a.

d. The geometrical meaning of the various kinds of intervals is shown in
Figure 7, where included end points are indicated by solid dots and excluded end
points by hollow dots.

1.62. Examples

a. Find the open interval a < x < b or (a, b) equivalent to

-5 < x + 2 < 3

o
(a, b)

o
la, b]

_____ --<>0

[a, b)

Figure 7.

0-0------.
(a, b]
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SOLUTION. Each of the two inequalities in (I), namely

-5 < x + 2

x + 2 < 3,

Chap. 1

(3)

remains valid if we add the same number to both sides. Adding - 2 to both sides.
of (2), or equivalently subtracting 2 from both sides, we get

-7 < x. (2')

Similarly, subtracting 2 from both sides of (3), we get

x<1.
Combining (2') and (3'), we find that the open interval equivalent to (1) is

-7<x<1.
This is just the interval (-7,1) in bracket form.

b. Find the closed interval a :::;x :::;b or [a, b] equivalent to

1 :::;x - 5 :::;4.

SOLUTION. Again, each of the inequalities in (4), namely

(3')

(4)

1 :::;x - 5, x - 5 :::;4, (5)

remains valid if we add the same number to both sides. The only sensible choice
of the number to be added is 5, of course, and this converts the inequalities (5) to

6:::; x, x:::; 9. (5')

Combining these inequalities, we find that the closed interval equivalent to (4) is

6:::; x :::;9,
or [6,9] in bracket form.

1.63. Neighborhoods

a. By a neighborhood of a point c we mean any open interval with c as its
midpoint. Thus, for example, the intervals (-1, 1),(- 2,2) and (- 3,3) are all neigh-
borhoods of the origin of the real line, that is, of the point x = O. If we exclude
the midpoint c from any neighborhood of c, the resulting set is called a deleted
neighborhood of c. Note that a deleted neighborhood is the union of two open
intervals, rather than a single open interval.

b.. Let fJ (the Greek letter delta) denote any positive number. Then by the
fJ-neighborhood of a point c we mean the neighborhood of c of length 2fJ. In other
. words, the fJ-neighborhood of c is the open interval c - fJ < x < c + fJ,or equiva-
lently(c - fJ,c + fJ),shown in Figure 8A. The corresponding deleted fJ-neighborhood

/--8-+-8--j
010

c-8 c c+8

A

/--8-r-8-j
o 0 0

c-8 c c+8

B
Figure 8.
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of c is the union of intervals (c - b, c) u (c, c + b), shown in Figure 8B, where the
hollow dot indicates the missing point c. Note that (c - b, c + b) can also be
described as the set of all x whose distance from c is less than b, and hence, by
Theorem 1.55, as the set of all x such that Ix - cl < 0. Similarly, (c - b, c) u (c, c + b)
can be described as the set of all x such that 0 < Ix - cl < b.

There is nothing sacred about the use of the letter b in this context, apart from
mathematical tradition, and we could use any other letter as well. A common choice
is e (the Greek letter epsilon).

c. Example. Find the I-neighborhood of the point 2.
SOLUTION. Here c = 2, b = 1, and the neighborhood is just the open interval

2 - 1 < x < 2 + 1, namely 1 < x < 3 or (1,3). The corresponding deleted
I-neighborhood is the set (1,2) u (2,3).

1.64. Infinite intervals

a. In discussing intervals, it is convenient to introduce two new symbols. These
are 00, called (plus) infinity, and - 00, called minus infinity. The symbols 00 and - 00

must not be thought of as numbers, even though they appear in inequalities. Using
00 and - 00, we now define the following kinds, of intervals, where c is an arbitrary
number:

(1) The set of all numbers x such that x < c, denoted by - 00 < x < c;
(2) The set of all numbers x such that x ~ c, denoted by - 00 < x ~ c;
(3) The set of all numbers x such that x > c, denoted by c < x < 00;

(4) The set of all numbers x such that x ;;<; c, denoted by c ~ x < 00;

(5) The set of all numbers x, namely the whole real number system, denoted
by -00 < x < 00

In bracket notation, we denote these five kinds of intervals by (- 00, c), (- 00, c],
(c, oo), [c, (0) and (- 00, (0), respectively, with a round bracket for an excluded end
point and a square bracket for an included end point, just as before. These intervals,
involving 00 and - 00, are said to be infinite, as opposed to the finite intervals (a, b),
[a, b], [a, b) and (a, b].

b. Since 00 and - 00 are not numbers, we cannot allow either x = 00 or x =
_ 00. Therefore it is meaningless to write intervals like - 00 ~ x < c, c ~ x ~ 00,

_ 00 ~ x ~ 00, etc., and no infinite interval written iIi bracket form can have a
square bracket next to the symbol 00 or - 00.

c. Example. Find the set of all x such that

Ix - 11 - Ix - 21 = 1. (6)

SOLUTION. According to Theorem 1.55, equation (6) means that the distance
between the point x and the point 1 minus the distance between the point x and the
point 2 equals 1. This happens when x ;;<; 2 and only then (what goes wrong if x < 2?).
Therefore the set of all x satisfying (6) is the infinite interval 2 ~ x < 00, or [2, (0) in
bracket form.

PROBLEMS

1. What is the open interval, in bracket form, equivalent to - 3 < x - 3 < - 1?
The closed interval equivalent to - 2 ~ x + 1 ~ 4?



20 MathemaUcal Background Chap.-1

2. What is the half-open interval, in bracket form, equivalent to 1 ::s;x-I < 7?
Equivalent to .j2 < x + 2 ::s;J3?

3. Find the set of all x such that Ix - 11+ Ix - 21 = 1.
4. Find the .j2-neighborhood of the point 3. Write the corresponding deleted

neighborhood as a union of open intervals_
5. What is the open interval, in bracket form, equivalent to - 6 < 3x < 3? The

closed interval equivalent to - 6 ::s;- 3x ::s;3?
6. Find a simpler way of writing

(a) (1,3) v {3}; (b) [1,3) v [3,(0); (c) (- 00, 1)v (0, (0).
7. Find a simpler way of writing

(a) [-2,3Jn[-I,IJ; (b) [-I,IJn[I,2J; (c) (-oo,IJn(-I,oo).
*8. In what interval is the expression

1
x + Ixl

defined? How about~?

1.7 RECTANGULAR COORDINATES

As shown in Sec. 1.54, any given point on a line can be uniquely specified by
giving a single real number, called the coordinate of the point. We now show how
to uniquely specify any given point in a plane. This can be done by giving two real
numbers, again called the coordinates of the point.

1.71. Suppose that at a convenient point in a plane (this page, say) we con-
struct a pair of perpendicular lines, known as coordinate lines or coordinate axes,
intersecting in a point 0, called the origin (of coordinates). For convenience, we
choose one of the lines parallel to the short dimension of the page, calling it the
x-axis and labelling it Ox, and the other line parallel to the long dimension of the
page, calling it the y-axis and labelling it Oy. Each line is regarded as extending
indefinitely in both directions, and each is equipped with a positive direction, pointing
to the right in the case ofthe x-axis and upward in the case ofthe y-axis, as indicated
by the arrowheads in Figure 9A.

y

---..,.orl-------x

y

II

-------t-------x

A
Figure 9.

III

B

IV
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The plane containing the pair of perpendicular lines Ox and Oy is called the
xy-plane. The two coordinate lines divide the xy-plane into four regions, called
quadrants. These are indicated by the Roman numerals in Figure 9B, where I refers
to the first quadrant, II to the second quadrant, and so on. Note that the quadrants
are arranged in the counterclockwise direction, that is, in the direction opposite to
that in which the hands of a clock move.

1.72. We are now able to associate a pair of numbers with any given point P
in the xy-plane, by making the following construction which you have probably
already encountered before: Through the point P we draw two straight lines, one
perpendicular to the x-axis, the other perpendicular to the y-axis. Suppose that, as
in Figure 10, the first line intersects the x-axis in the point with coordinate a, where
the x-axis is regarded as a number line with the indicated positive direction. Suppose
also that the second line intersects the y-axis in the point with coordinate b, where
the y-axis is regarded as another number line with the indicated positive direction.
Then the numbers a and b are called the rectangular coordinates, or simply the
coordinates, of the point P. More exactly, a is called the abscissa or x-coordinate
of P, while b is called the ordinate or y-coordinate of P.

Conversely, given any pair of numbers a and b, to "plot" (that is, to find) the point
P in the xy-plane with abscissa a and ordinate b, we simply reverse the above con-
struction: We draw two straight lines, one perpendicular to the x-axis through the
point of the x-axis with coordinate a, the other perpendicular to the y-axis through
the point of the y-axis with coordinate b. Then, as is immediately apparent, the point
of intersection of these two lines is just the point P with abscissa a and ordinate b.

y

b ~--_ P = (a,b)

__ +- ..L- x
o a

Figure 10.

1.73. The point P with abscissa a and ordinate b may also be denoted by (a, b).
The symbol (a, b) is called an ordered pair, and is a special kind of two-element set
of real numbers, namely one in which the order of the elements matters. Thus, although
the ordinary sets {a, b} and {b, a} are identical (Sec. 1.23a), the ordered pairs (a, b)
and (b, a) are different unless a = b.

Do not confuse the ordered pair (a, b) with the same symbol (a, b) used to
designate an open interval with end points a and b. The context will always show
which meaning is to be attached to the symbol (a, b). Although it would be nice to
have different symbols for different things, this is a case where mathematical tradition
must be respected.

Note that the origin 0 has abscissa zero and ordinate zero. In other words,
o is the point (0, 0).
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Figure 11.
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1.74. The distance between two points in the plane

THEOREM. Let PI = (Xl> yd and Pz = (xz, yz) be two points in the xy-plane, and
let IPIPzl be the distance between them. Then

IPIPzl = .Jlxl - xzlz + IYI - yzl~. (1)

Proof. Dropping perpendiculars from PI and Pz to the x- and y-axes, we find
that PIP 2 is the hypotenuse of the right triangle PI QP z shown in Figure 11. More-
over, it is obvious that IPIQI = IABI and IQPzl = ICDI, where A and B have coor-
dinates XI and xz regarded as points of the x-axis, while C and D have coordinates
YI and Yz regarded as points of the y-axis. Therefore, by the Pythagorean theorem,

IPIPzlz = IPIQlz + IQPzlz = IABlz + ICDlz,
and hence

IpIP zl = .J1ABF+lCDf.
But, according to Theorem 1.55,

IABI = IXI - xzl, ICDI = IYI - Yzi. (3)
Combining (2) and (3), we get (1) at once. 0

Since Ixlz = X
Z for every number X, regardless of the sign of X, we can just as

well write (1) in the equivalent form

IpIPzl = .J(xi - xz)Z + (YI - yz)Z = ~ - xlf + (yz - YI)2. (4)
1.75. Examples

a. Find the distance between the points PI = (-1,2) and P2 = (1, -2).
SOLUTION. According to (4),

IP1P21 = .J(-1 - 1)2+ (2 - (_2))2 = .J(-2)2 + 42
= .J4+16 = .J26 = 2/S.

b. Find, the distance between two points PI and P 2 lying on the same line
parallel to the x:'axis. On the same line parallel to the y-axis.
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SOLUTION. If PI and P2 lie on the same line parallel to the x-axis, then PI
and P2 have the same ordinate, say b, so that PI = (Xl> b) and P2 = (X2' b). Therefore,
in this case, formula (4) reduces to

IPIP21 = )(xi - X2)2 + (b - W = )(xi - X2)2 = IXI - x21. (5)

This is just what we would expect from Theorem 1.55, which deals with the case
where the common ordinate b equals zero.

In the same way, it is easy to show that if PI and P2 lie on the same line parallel
to the y-o;xis, so that PI and P2 have the same abscissa, then formula (4) reduces to

(6)

Give the details.
c. Is the triangle ABC with vertices A = (0, 0), B = (3, 3), C = (-1, 7) a

right triangle?
SOLUTION. Yes. To see this, we first calculate the squares of the side lengths

of ABC, with the help of formula (4). As a result, we obtain

IABI2 = 32 + 32 = 18,
iBC!2 = (_4)2 + 42 = 32,
\AC!2 = (-if + 72 = 50,

so that

IAC!2 = IABI2 + IBC!2

for the given triangle ABC. It follows from the converse of the Pythagorean theorem
(explain) that ABC is a right triangle with the side AC as its hypotenuse.

PROBLEMS

1. Plot the points A = (2,0), B = (2, 2), C = (0, 3),D = (- 2,2), E = (- 2, 0), F =
(0, -1) on ordinary graph paper. Then join A to C, B to D, C to E, D to F,
E to A, and finally F to B. What is the resulting figure?

2. Suppose the figure in the preceding problem is shifted one unit to the right and
two units upward. Then A, B, C, D, E, F go into new points A', B', C', D', E',
F'. What are these new points?

3. If the point (x, y) lies in the first quadrant, then x > 0, y > O. Write similar
conditions characterizing the other three quadrants.

4. Find the distance between the pair of points
(a) (1,3),(5,7); (b) (-2, -3),(1,1); (c) (1,3),(1,4); (d) (2,4),(5,4).

5. Give an example of four points, each in a different quadrant, whose distances
from the origin are all equal.

6. Given two points PI = (XI' ytl and P2 = (X2, Y2), verify that the point with
abscissa t(xi + X2) and ordinate t(YI + Y2) is the midpoint of the segment
PIP2.

7. Two vertices A and B of an isosceles triangle ABC lie at the points (0, 1) and
(10, 1). Find the abscissa of the point C if lAC! = IBC!.

8. Locate the points A = (4,1), B = (3,5), C = (-1,4) and D = (0,0). Show that
ABCD is a square. What is the side length of the square?
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9. Find the midpoints of the sides of the square ABCD in the preceding problem.
*10. Find all points which are equidistant from the x-axis, the y-axis and the point

(3,6).
*11. How many points of the form (m, n), where m and n are integers, lie inside the

circle of radius! with its center at the origin?
*12. Given three noncoIIinear points A = (0, 0), B = (x, y) and D = (x', y'), what

choice of the point C makes the quadrilateral ABCD a parallelogram?

1.8 STRAIGHT LINES

1.81. The slope of a line

a. Let L be any non vertical straight line in the xy-plane, and let PI = (x l' y 1)
and P2 = (X2' Y2) be any two distinct points of L. Then by the slope of L we mean
the ratio

Y2 - Ylm= (1)

(2)

To interpret the slope geometrically, we draw the line through PI parallel to the
x-axis and the line through P2 parallel to the y-axis, intersecting in the point A =
(X2, yd, as shown in Figure 12. Then the slope m is just the ratio

IP2AIm=--IP1AI
of the length of the side P2A to the length of the side PIA in the right triangle P1AP2•

b. It is important to note that the slope of a line L does not depend on the
particular choice of the points used to define the slope. To see this, let P3 and P4
be any two points on L other than PI and P2, and suppose the line through P3

parallel to the x-axis intersects the line through P4 parallel to the y-axis in the
point B, as shown in Figure 13, where L, P 1> P 2 and A are exactly the same as in
Figure 12. Then the right triangles P1AP2 and P3BP4 are similar (why?), and
therefore

L

y

Figure 12.

y

Figure 13.
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so that the formula
IP4BI

m = IP3BI
leads to exactly the same value of m as formula (2).

c. The slope of the line L in Figure 12 is clearly positive, since in this case
both X2 - Xl and Y2 - YI are positive, and hence so is the ratio (1). However, a
line may well have a negative slope. For example, the ratio (1) is n~gative for the
line L shown in Figure 14. To see this, we need only note that Y2 - Yl is now nega-
tive, while X2 - Xl is still positive.

Thus, in brief, if a line slopes up to the right, its slope is positive, while if a line
slopes down to the right, its slope is negative. *

1.82. The inclination of a line

a. By the inclination of a straight line L in the xy-plane we mean the smallest
angle between the x-axis and L, as measured from the x-axis to L in the counter-
clockwise direction. The inclination, which we denote by e (the Greek letter theta),
will be measured in degrees, denoted by the symbol 0. Moreover, any line parallel
to the x-axis, including the x-axis itself, will be regarded as having the inclination 0°
(zero degrees). Since vertical angles are equal (see Figure 15), it doesn't matter

y

x

L

Figure 15.
*Note that ininterpreting the slope geometrically (and in proving Theorem 1.74), we have
tacitly assumed that the line L slopes up to the right and that the point PI lies to the left of
the point P2• As an exercise, consider the modifications required in the other cases.
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whether the measurement of () is started to the right or to the left of the point in
which L intersects the x-axis. It is also clear from the figure that if L makes the
angle 180° + ()with the x-axis, then L also makes the smaller angle e with the x-axis.
Therefore the inclination () of any line whatsoever lies in the half-open interval
0° ~ e < 180°.

b. Now, according to formula (2), the slope m of the line L is just the ratio of
the length of the side PzA to the length of the side PIA in the right triangle PI AP z.
Students who have had some elementary trigonometry will recall that this ratio ("the
opposite side over the adjacent side") is also called the tangent of the interior angle
at PI in the triangle PIAPz. But this angle is precisely the inclination e of the line L,
since the side PIA is parallel to the x-axis. Thus, in the notation of trigonometry, we
have the formula

m = tan e, (3)

which is read as "m equals the tangent of e," giving the relation between the inclina-
tion of a line and its slope. The same argument as in Sec. 1.81b, based on the use
of similar triangles, shows that the tangent of an angle depends only on the size of
the given angle and not on the size of the right triangle containing the angle.

Figure 16 shows various lines, together with their inclinations and slopes, as
related by formula (3). Note that although a vertical line has inclination 90°, its slope
is undefined, since setting XI = Xz in formula (1) would make the denominator zero.
It is for this reason, of course, that L was assumed to be nonvertical in Sec. 1.81a.

c. In connection with formula (3), it should be noted that if the angle e lies
between 90° and 180°, then tan e is negative, as we would expect since the line L
then slopes down to the right and has negative slope. To calculate tangents between
90° and 180°, we use the formula

tan (180° - e) = -tane,

established in every course on trigonometry. For example,

tan 135° = tan (180° - 45°) = -tan 45° = -1,

1
tan 150° = tan (180° - 30°) = -tan 30° = - J3'

and so on.

90°, slope undefined

(4)

120°, slope-y13

135°, slope -1

150°, slope - Ji

0°, slope 0

Figure 16.

60°, slope yI3

0°, slope 0
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(5)

1.83. Examples

a. Find the slope m of the line going through the points (1,3) and (4,6).
SOLUTION. According to (1),

Y2 - Y! 6 - 3 3
m=---=--=-= 1.

X2 - x! 4 - 1 3

b. Find the inclination (J of the line going through the same points.
SOLUTION. According to (3) and the definition of inclination, (J is the smallest

angle whose tangent is 1, namely 45°.
c. Find the slope m of the line whose inclination is 15°.
SOLUTION. Here (3) gives

m = tan 15° = 0.26795,

where we consult a table of tangents or use a pocket scientific calculator.
d. How are the slopes of a pair of perpendicular lines related?
SOLUTION. Let the lines be Land L', as in Figure 17, where L has slope m

and inclination (J, while L' has slope m/ and inclination (J/ = 180° - ct.. Here ct.
(the Greek letter alpha) is the other acute interior angle of the triangle P!P2P3• Then

IP2P31m = tan (}= ---.
IP!P31

On the other hand, by (4),

m' = tan (J/ = tan (180° - ct.) = -tan ct.,

so that

m/= (5/)

Comparing (5) and (5'), we find that

m' =

or, equivalently,

m=

,
m

m'
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In other words, the slope of either of two perpendicular lines is the negative of the
reciprocal of the slope of the other line.

e. Find the slope of the line L' perpendicular to the line L going through the
points (2, 3) and (4, 6).

SOLUTION. Let m be the slope of Land m' the slope of L'. Then

6 - 3 3
m = 4 - 2 = 2'

so that

m'=
m

PROBLEMS

1. Find the slope of the line going through the pair of points
(a) (- 2,4), (- 3, - 7); (b) (- 2,6), (1, 5); (c) (2,3), (2, 5);
(d) (1, J2), (2, -13).

2. Let L be a line with slope m and]; a line with slope m'. When are Land L'
parallel?

3. Find the inclination of the line going through the pair of points
(a) (2,4), (4, 6); (b) (2,3), (2, 5); (c) (2, - 4), (4, - 6);
(d) (2, J2), (- 2, J2).

4. Find the slope of the line with inclination
(a) 20°; (b) 100°; (c) 165°.

5. Find the slope of every line paralIel to the line going through the points (1, - 4)
and (-2,5).

6. Find the slope of every line perpendicular to the line going through the points
(1,3)and (-3, -1).

7. Show that the line L going through the points (1,3) and (2,5) is perpendicul~r
to the line L' going through the points (4, 6) and (2,7). .

*8. How is the line going through the points (0, -:-13) and (1, J2) related to the line
going through the points (-1, -13) and (0, J2)?

1.9 MORE ABOUT STRAIGHT LINES

1.91. The equation of a straight line

a. By the term "equation of a straight line" we mean a mathematical statement,
in equation form, which expresses the relationship between the x-coordinate and the
y-coordinate of every point on the line. To find such a statement, we reason as
follows: Let L be a nonvertical straight line with slope m, going through a fixed point
PI = (Xl' Yl), and let P = (x, y) be an arbitrary point on L, as in Figure 18. Then,
expressing the slope of L in terms of the coordinates of PI and P, we get

Y - YI---=m.
x - XI

It follows that
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Y = mx +.(YI - mxl). (1)

b. Despite its appearance, the right side of (1) does not actually depend on the
particular choice of the fixed point PI = (XI' Yd on the line L. To see this, suppose
we replace PI by another fixed point P2 = (X2, Y2) on L, as in the figure. Then we get

Y = mx + (Y2 - mX2), (1')

instead of (1). But we can easily show that the two expressions YI - mXI and Y2 - mX2
are equal. In fact, suppose we calculate the slope of L with the help of the points
P I and P 2, relying on the fact, proved in Sec. 1.81b, that the slope of a line L does
not depend on the particular choice of the points used to define the slope. The
result is

Y2 - YI
= m,

so that

or

as claimed.
Since the expression Yl - mXI in (1) does not depend on the particular choice

of the point PI = (Xl' Yl) on L, we might just as well denote Yl - mXI by a single
symbol, say b. Equation (1) then becomes simply ..

Y = mx + b, (2)

which is the desired equation of a straight line with slope m. The geometric meaning
of the term b will be given in a moment (Sec. 1.92b).

1.92. The intercepts of a straight line

a. Let L be a straight line other than the coordinate axes themselves, and suppose
L intersects the x-axis in a point (a, 0). Then a is called an x-intercept of L. Similarly,
if L intersects the y-axis in a point (0, b), we call bay-intercept of L. By an intercept
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we mean either an x-intercept or a y-intercept. Consulting Figure 19, we see that

(1) If L is neither vertical nor horizontal, then L has exactly two intercepts,
namely an x-intercept and a y-intercept (as in Figure 19A);

(2) If L is vertical or horizontal, then L has just one intercept, an x-intercept
but no y-intercept if L is vertical (as in Figure 19B) and a y-intercept
but no x-intercept if L is horizontal (as in Figure 19C).

b. Now let L be the straight line with equation (2), where we assume that L is
neither horizontal nor vertical, so that L has both an x-intercept and a y-intercept.
To find these intercepts, we need only note that the substitution x = 0 in (2) gives

y = m. 0 + b = b,

while the substitution y = 0 gives

O=mx+b
or

mx = -b,

so that

b
x=

m

(why is m nonzero in this case?). Therefore L intersects the x-axis in the point
(-blm,O) and the y-axis in the point (0, b). But this just means that the line L has
- blm as its x-intercept and b as its y-intercept.

c. If the line L is vertical and hence parallel to the y-axis, every point of L has
the same abscissa regardless of its ordinate. Suppose this abscissa is a. Then every
point P = (x, y) on L satisfies the simple equation

x = a, (3)

in which the ordinate y does not appear at all. Note that (3) is not a special case
of (2). This is hardly surprising, since in deriving (2) the case where L is vertical,
and hence has no slope (recall Sec. 1.82b), was excluded from the outset.
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d. If the line L is horizontal and hence parallel to the x-axis, every point of
L has the same ordinate regardless of its abscissa. Suppose this ordinate is b. Then
every point P = (x, y) on L satisfies the simple equation

y = b, (4)

in which the abscissa x does not appear at all. This time (4) is a special case of (2).
In fact, to get (4) from (2) we need only make the substitution m = O. This is hardly
surprising, since every horizontal line has zero slope.

e. All three equations (2), (3) and (4) can be combined into the single "master
equation"

Ax + By + C = 0, (5)

where A, Band C are constants, that is, fixed numbers, and at least one of the
numbers A and B is nonzero. In fact, if A f. 0 and B = 0, equation (5) becomes

Ax + C = 0,

or
C

x = -:4'
which is of the form (3) with a = - Cf A, while if A = 0 and B # 0, (5) becomes

By + C = 0,

or
C

y = -B'
which is of the form (4) with b = - CfB. In any case, if B # 0 we can divide both
sides of (5) by B, obtaining

A C-x+y+-=OB B'

or
A C

y = -Bx - B'
which is of the form (2) with slope m = - AlB and y-intercept b = - CfB.

f. Note that none of the equations for a straight line involves powers of x
and y higher than the first power. In mathematics such an equation is said to be
linear (in x and y). This term stems from the fact that every linear equation in x
and y is the equation of some straight line in the xy-plane. Another way of writing
the equation of a straight line, involving the intercepts, is given in Problem 12.

By "the line y = mx + b" we mean, of course, the line with equation y =
mx + b. Similarly, "the line Ax + By + C = 0" means the line with equation
Ax + By + C = 0, and so on.

1.93. Examples

a. Find the line with slope 2 going through the point (3, 1).
SOLUTION Using (1) with m = 2, Xl = 3 and YI = 1, we get

y = 2x + (1 - 2 . 3) = 2x - 5.
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b. Find the line going through the points (1,3) and (4,6).
SOLUTION. The line has slope

6 - 3 3
m=--=-=1.

4 - 1 3

Therefore, choosing (1, 3) as the point (Xl> Yd in (1), we get
Y = X + (3 - 1 . 1) = x + 2.

Naturally, the same result is obtained if we choose (4, 6) as the fixed point on the line
(check this). '

c. Find the slope and intercepts of the line

(7)

Using
i
i

Y = 3x + (3 - 3. 1) = 3x.

Y = 3x + 2. (6)

SOLUTION. Since (6) is of the form (2), with m = 3 and b = 2, the line has
slope 3, y-intercept 2 and x-intercept -blm = -l .

d. Find the line L which goes through the point (1, 3) and is parallel to the
line (6).

SOLUTION. Being parallel to (6), L has the same slope as (6), namely 3.
(1), with m = 3, Xl = 1 and Yl = 3, we get

Note that L goes through the origin of the xy-plane (why?). :
e. Find the line L' which goes through the point (1,3) and is perpendicular to

the line (6).
SOLUTION. Being perpendicular to (6),L' must have slope -t(recall Sec.1.83d).

Thus, instead of(7), we now have '

y = _! x + (3 + !. 1) = _! x + 10. (8)
3 333

We can also write (8) as

(9)

x + 3y - 10 = 0,

which is of the form (5), with A = 1, B = 3, C = -10.
f. Find the point of intersection of the lines (6) and (8).
SOLUTION. The abscissa Xl of the point of intersection of the lines (6) an~

(8) is characterized by the fact that both lines have the same ordinate Yl when x = x~.
It follows that Xl is the solution of the equation '

1 10
3x + 2 = --x +-

3 3 '

obtained by setting the right side of (6) equal to the right side of (8). Solving (9)
for x, we get

or

4 2
X = Xl = 10 = S'

I
(10)

!

I
i



Sec. 1.9 More About Straight Lines 33

To get Yl' the ordinate of the point of intersection, we substitute (10) into (6), or into
(8), obtaining

2 16
Yl = 3Xl + 2 = 3 . - + 2 = -5 5'

Therefore the lines (6) and (8) intersect in the point

(2 16)
(Xl' Yd = '5's .

PROBLEMS

1. Find the line with slope 2 going through the point
(a) (1,0); (b) (0, I); (c) (1,1); (d) (0,0); (e) (1, -1).

2. Find the line going through the pair of points
(a) (2,-5),(3,2); (b) (-t,O),(O,i); (c) (-3,1),(7,11);
(d) (5,3),(-1,6).

3. Find the line with slope rn and y-intercept b if
(a) rn = -l,b = 1; (b) rn = 3,b = 0; (c) rn = O,b = -2;
(d) rn = -t, b = l

4. Find the slope rn, x-intercept a and y-intercept b of the line
(a) y = 3x - 6; (b) y = 2x + 4; (c) y = -x + 3; (d) y == 2.

5. Do the same for the line
(a) 5x - y + 4 = 0; (b) 3x + 2y = 0; (c) 2y - 6 = 0;
(d) X + Y + 1 = O.

6. Find the line which goes through the point (2, -4) and is parallel to the line
y = 2x + 3. .

7. Find the line which goes through the point (1,2) and is perpendicular to the
line going through the points (2,4) and (3, 5). What is the point of intersection
of these two lines?

8. What is the area of the triangle lying between the coordinate axes and the line
2x + 5y - 20 = O?

9. Does the point (2, 3) lie above the line y = 2x + 1 or below it?
10. What is the relationship between the lines 2x + 3y - 1 = 0 and 4x + 6y + 3 = O?

Between the lines 2x + 5y - 4 = 0 a.nd 15x - 6y + 5 = O?
11. Find the line joining the origin to the point of intersection of the lines

x + 2y - 3 = 0 and x - 3y + 7 = O.
*12. .Show that the equation of the line with x-intercept a and y-intercept b is

~+:l:'=1
a b '

assuming that a and b are both nonzero.
*13. Find the line with x-intercept a and y-intercept b if

(a) a=1,b=2; (b) a=-3,b=-1; (c) a=i,b=k.
*14. There are two lines, each with equal intercepts, going through the point (2, 3).

Find them.
*15. What is the (perpendicular) distance between the parallel lines 3x - 4y - 10 = 0

and 6x - 8y + 5 = O?
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(11)

*16. Let d be the (perpendicular) distance between the point PI = (XI, yd and the
line Ax + By + C = O. Show that

d = IAxl + BYI + q.
)A2 + B2

*17. Find the distance between
(a) The point (3,1) and the line 3x + 4y - 3 = 0;
(b) The point (I, 1) and the line 5x - 12y + 72 = 0;
(c) The point (1, - 2) and the line x - 2y - 5 = O.



Chapter 2

DIFFERENTIAL
CALCULUS

2.1 FUNCTIONS

2.11. Constants and variables. The quantities encountered in mathematics fall
into two broad categories, namely "fixed quantities," called constants, and "changing
quantities," called. variables. A constant "takes only one value" in the course of
a given problem, while a variable "takes two or more values" in the course of one
and the same problem.

For example, let L be the straight line with slope m and y-intercept b. Then,
according to Sec. 1.9, L has the equation

y = mx + b. (1)

(2)

Here m and b are constants characterizing the given line L, while x and yare variables,
namely the abscissa and ordinate of a point which is free to change its position
along L.

As another example, suppose a stone is dropped from a high tower. Let s be
the distance fallen by the stone and t the elapsed time after dropping the stone.
Then, according to elementary physics, sand t are variables which are related, at
least for a while, by the formula

1
s = "2gt2,

where 9 is a constant known as the "acceleration due to gravity." To a good ap-
proximation, this formula becomes

s = 16t2,

if s is measured in feet and t in seconds.

2.12. Related variables and the function concept

a. A great many problems arising in mathematics and its applications involve
related variables. This means that there are at least two relevant variables, and the value
of one of them depends on the value of the other, or on the values of the others if
there are more than two. For example, the position of a spy satellite depends on the
elapsed time since launching, the cost of producing a commodity depends on the
quantity produced, the area of a rectangle depends on both its length and its width,
and so on.

Actually, the situation we have in mind is where knowledge of the values of all
but one of the variables uniquely determines the value of the remaining variable, in

35
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a crucial sense to be spelled out in a moment (Sec. 2.12b). The variables whose values
are chosen in advance are called independent variables, and the remaining variable,
whose value is determined by the values of the other variables, is called the dependent
variable. The "rule" or "procedure" leading from the values of the independent
variables to the value of the dependent variable, regardless of how this is accomplished,
is called a function. We then say that the dependent variable "is a function of" the
independent variables. The independent variables are often called the arguments of
the function.

Thus, for example, if x and yare the abscissa and ordinate of a variable point
on the line with slope m and y-intercept b, then y is a function of x, as described by
formula (1). Similarly, the distance traversed by a falling stone is a function of time,
as described by formula (2).

b. Consider a function of one independent variable, say x, and let y be the
dependent variable. Then the function assigns a value of y to each value of x. Ex-
pressed somewhat differently, the function establishes a correspondence between the
values of x and those of y. This correspondence must be such that each value of x
uniquely determines the corresponding value of y. This simply means that to each
value of x there corresponds one and only one value of y. On the other hand, the same
value of y may well correspond to more than one value of x. The situation is the
same for several independent variables Xl' X2, •.. , Xn if for "value of x" we read
"set of values of Xl, X2, ••. , Xn."

Thus if

then y is a function of x, since to each value of x there corresponds one and only
one value of y. On the other hand, each positive value of y corresponds to two
values of x. For example, the value y = 4 corresponds to the two values x = 2 and
x = - 2. This clearly prevents x from being a function of y, since every positive
value of y fails to uniquely determine the corresponding value of x.

As another example, let A be the area of the rectangle of length I and width w.
Then A is a function of I and w, since the relation between these variables is described
by the simple formula

A = lw, (3)

leading to one and only one value of A for any given pair of values of I and w. Solving
(3) for 1,we get

I= ~,
w

which shows that I is a function of A and w. Similarly,

A
w = I'

which shows that w is a function of A and I.
c. Do not jump to the conclusion that all related variables are numbers, and

that dll functions involve the use offormulas or numerical calculations. For example,
the name of a car's owner is a function of the inscription on the car's license plate,
and the rule or procedure describing this function is just this: Look up the plate in
the motor vehicle records of the state in question, and find the owner's name.
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On the other hand, it is true that examples like this are a bit "oflbeat." Almost
all the functions considered in this book involve variables which take only numerical
values.

2.13. Function notation

a. The fact that one variable, say y, is a function of another variable, say x,
can be indicated by writing

y = f(x),

pronounced "y equals f of X." Here f is a letter denoting the function, that is, the
rule or procedure (usually, but not always, involving some formula) leading from the
values of X to the values of y. Suppose we give the independent variable x the value c.
Then the corresponding, value of y is denoted by f(c), and is called the value of the
function f at c. This is a bit fussy, and it is simpler to use the same letter to denote
both the independent varia1;)leand its values. We can then call f(x) the value off at x.

Although, strictly speaking, f(x) is the value of the function f at x, we will often
talk about "the function y = f(x)" or simply "the function f(x)." Suppose y =
f(x) = x2, for example. Then we might talk about "the function f(x) = x2," "the
function y = x2," or simply "the function x2."

b. There is nothing sacred about the use of the letter f to denote a function,
apart from its being the first letter of the word "function," and other letters will do
just as well. Common choices are Latin letters like g, h, F, etc., or Greek letters like
q> (phi), t/J (psi), <1>(capital phi), etc. Sometimes the letter is chosen to suggest a geo-
metrical or physical quantity under discussion. Thus A is often used for area, V for
volume, t for time, and so on.

c. Functions of several variables are indicated in the same way. Thus f(8, t)
means a function of two independent variables 8 and t, <1>(u, v, w) means a function
of three independent variables u, v and w, and so on.

2.14. The domain and range of a function

a. There is still on~ thing missing in our definition of a function, for we have
yet to specify the set of values taken by the independent variable (or variables). This
set is called the domain of the function. For example, returning to the problem of
the falling stone, we observe that formula (2) does not describe the motion of the
stone for all values of t, but only until the stone hits the ground. If the stone is dropped
from a height of64 feet, say, it hits the ground after falling for 2 seconds (64 = 16. 22)
and is subsequently motionless. In other words, formula (2) is valid only during the
time interval 0 :::; t :::;2, a fact we can make explicit by writing

8 = 16t2 (0 :::; t :::;2) (4)

instead of (2). The subsequent behavior of the stone is described by the formula

8 = 64,
or, more exactly, by

We can also write (5) as

8 = 64

8 = 64

(t > 2).

(2 < t < (0),

(5)

(5')
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(7)

in terms of the infinite interval 2 < t < 00. Incidentally, this shows the desirability
of considering constant functions, that is, functions which take only one value.

b. Formulas (4) and (5) can be combined into the single formula

s={16t
2

if 0~t~2, (6)
64 if t > 2.

Moreover, noting that the stone is motionless before it is dropped, as well as after
it hits the ground, we have the even more comprehensive formula

{
o if t < 0,

s = 16t2 if 0 ~ t ~ 2,
64 if t> 2.

Formulas (4), (6) and (7) all describe different functions, in the sense that in each case
the domain of the function, that is, the set of allowed values of the independent
variable t, is different.

c. Another way of saying that a function f has the domain D is to say that
f is defined in D. Thus the function (6) is defined in the interval 0 ~ t < 00, that is,
for all nonnegative t, while the function (7) is defined in the interval - 00 < t < 00,

that is, for all t, positive, negative and zero.
d. By the range of a function we mean the set of all values taken by the function,

or, equivalently, the set of all values taken by the dependent variable. For example,
all three functions (4), (6) and (7) have the same range, namely the interval 0 ~ s ~ 64.
On the other hand, the range ofthe constant function (5) is the set whose only element
is the number 64.

2.15. Examples

a. Let

f(x)=~.

Find f(O), f( 1)and f(2).
SOLUTION. To find f(O), we merely substitute x = 0 into (8), obtaining

f(O) = ~ = Jl = 1,

and similarly

f(l) = ~ = .j6 = O.

On the other hand, the quantity

f(2)=~=R

(8)

"does not exist," since there is no real number whose square is negative. There is a
sense in which meaning can be ascribed to "imaginary numbers" likeR,but such
an extension of the concept of number lies beyond the scope of this book, in which
all numbers are assumed to be real (Sec. 1.35).

Whenever a function f(x) is specified by an explicit formula like (8), we will
understand the domain of f(x) to be the largest set of numbers x for which the formula
makes sense. In the present case, this set is just the interval -1 ~ x ~ 1, since
1 - x2 is negative for any other value of x and we do not take square roots of negative
numbers. Note that any smaller set can serve as the domain of a function whose
values are given by the same formula (8), but in such cases we will always explicitly
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indicate the domain, as in the formula

f(x) = J1=X2 (0 < x < 1),

Functions 39

where the domain is now the smaller interval 0 < x < 1.
b. Is the area of a rectangle a function of its perimeter?
SOLUTION. No, since knowledge of the perimeter of a rectangle does not

uniquely determine its area. For example, the rectangle of length 15 and width 3
has perimeter 15 + 3 + 15 + 3 = 36 and area 15 . 3 = 45, while the square of side
9 has the same perimeter 9 + 9 + 9 + 9 = 36 and a different area 92 = 81.

c. Turning to a function of two variables, let

x+y
g(x,y) = --.

x-y

Find g(l, 2), g(2, 1) and g(l, 1). What is the domain of g(x, y)?
SOLUTION. Easy substitutions give

1 + 2 3
g(I,2) = 1 _ 2 = -=1 = - 3

and
2 + 1 3

g(2, 1) = 2 _ 1 = 1= 3.

On the other hand, g(I,I) fails to exist, since

1 + 1 2
g(l, 1) = 1=1 = 0'

and division by zero is impossible. The domain of g(x, y) is the set of all pairs of
numbers x and y such that x #- y, since x = y leads to division by zero. Regarding
each such pair of numbers as the rectangular coordinates of a point (x, y) in the
xy-plane, we see that the domain of g(x, y) is the set of all points in the xy-plane
except those on the line y = x.

2.16. One-to-one functions and inverse functions

a. Let y be a function of x, or, in symbols, y = f(x). Then, as in Sec. 2.12b,
x uniquely determines y, that is, to each value of x there corresponds one and only
one value of y. On the other hand, there is nothing so far to prevent more than one
value of x from corresponding to one and the same value of y. However, suppose
we now impose an extra requirement on the function y = f(x), namely that not
only should x uniquely determine y but also that y should uniquely determine x. Then
not only does there correspond one and only one value of y to each value of x, but
also to each value of y there corresponds one and only one value of x. A function
y = f(x) of this special type is called a one-to-one function.

b. Let y = f(x) be a one-to-one function. Then there is a simple rule leading
from the dependent variable y back to the independent variable x. In fact, let Yl be
any given value of y. Then Xl' the corresponding value of x, is just the unique value
of x to which the function y = f(x) assigns the value Yl' Thus the rule leading from
y to x is just as much a function as the original rule leading from x to y. This new
function, leading from y to x, is denoted by x = f-l(y) and is called the inverse
function, or simply the inverse, of the original function y = f(x). Never make the
mistake of confusing the inverse function f-l(y) with the reciprocal l/f(y).
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Let f(x) be a one-to-one function defined in some interval I. Then we simply
say that f(x) is one-to-one in I.

c. Example. The funCtion

(9)

with domain - ro < x < ro and range 0 ~ y < ro, is not one-to-one, since to each
positive value of y there correspond two values of x, namely JY and - JY (as always,
JY means the positive square root of y). But suppose we restrict the domain of (9)
to nonnegative values of x. Then to each value of y there corresponds precisely one
value of x, namely JY. In other words, the function

y = f(x) = x2

is one-to-one, with inverse

(0 ~ x < ro)

(0 ~ y < ro).

More generally, it is easy to see that the function y = x2 is one-to-one in any interval
in which x is of fixed sign, but not in any interval in which x changes sign.

PROBLEMS

1. If f(x) = x2 + 3x + 6, find f(O), f(I), f(2) and f(.J2).
2. If cp(t) = It I + 3t2, find cp( - 2), cp( -1), cp(O) and cp(J3).
3. Let

2x + 1
g(x) = 3x2 _ r

Find g( -1), g(O), g(1), g(I/J2) and g(I/J3).
4. Find the domain and range of the function

(a) y = ~; (b) y = .j9=X2;
1

(d) y = x + 5'
5. Let

1
(c) y = --3;x-

x - 2y
f(x,y) = --.

2x - y

Find f(3, 1), f(O, 1), f(l, 0), f(a, a) and f(a, - a).
6. Find the domain and range of the function

1 1
z = - +-.

x y

7. Is the number of hairs on your head a function of time?
8. Is a man's birthday a function of his first name? Of his Social Security number,

assuming that he has one?
9. Let P be the closing price of a given security traded on the stock exchange,

and let d be the date. Then P is a function of d. Given d, how do you find P?
Is the function ever undefined?

10. Is the weight of a first-class letter a function of its postage!
11. Is the area of a square a function of its perimeter?
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12. Is the number of a page of this book a function of the number of commas on
the page?

13. "The area of a right triangle is a function of two variables." True or false?
14. 'The area of a parallelogram is a function of two variables." True or false?
15. Express the volume V ofa brick as a function of its length I,width wand height h.
16. Let

1 1 1
j(x,y,z) = JX + ~ + -r;'

Find j(l, 1, 1), j(4, 1,9), j(l, 9,1) and j(4, 9,16).
17. The function given by the table

x 0 20 60 80 100

y 32 68 104 140 212

is familiar from everyday life. What is it? Fill in the missing entries in the table.
Find a formula relating y to x and one relating x to y.

18. Is the inverse of a one-to-one function always a one-to-one function?
19. Let X be the domain and Y the range of a one-to-one function y = j(x). What

are the domain and range of the inverse function x = j-1(y)?
20. Which of the following functions are one-to-one?

(a) y = x;
1

(b) y = -;
x

1
(c) y = --1;x- (d) y = JX;

(e) y = Ix!-
Find the inverse of each one-to-one function.

21. "The position of a clock's hands is a one-to-one function of the time of day."
True or false?

*22. Find the domain and range of the function y = [x], where [x] is the integral
part of x (Sec. 1.4, Prob. 10).

*23. Verify that the following formal definitions of function, domain, value and
range agree in all essentials with those given in the text:
Given any two non empty sets X and Y, let j be a set of ordered pairs (x, y)

with x E X and y E Y such that for every x E X there is one and only one ordered
pair (x, y) E j with x as its first element. Then j is said to be a junction defined
in X, and X is called the domain off. If (x, y) is an ordered pair in f, then y,

. - the second element of the pair, is called the value off at x, writtenj{x). The
set of all values of a function f, that is, the set (f(x): x EX}, is called the
range off

*24. Is the set Y in the preceding problem always the range of j?
*25. How many different functions are there with domain X = {I, 2, ... , n} and

range Y = {a, b} ?
*26. Let the function j be defined as a set of ordered pairs (x, y), as in Problem 23.

When is j one-to-one? If j is one-to-one, how is the inverse j-1 obtained?
*27. We can exhibit the behavior of a function j with domain X and range Y by

drawing a diagram like Figure 1, where X and Yare represented by disks, the
values of the independent and dependent variables x and yare represented by
points inside the disks, and each value of x is connected by an arrow to the
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x
Figure I.

y

corresponding value of y. The arrows shew quite explicitly how f "maps" or
"carries" the values of x into those of y.

The function represented in Figure 1 is not one-to-one, since two arrows
terminate on the same point YI. Modify Figure 1 in such a way as to make it
represent a one-to-one function.

*28. What is the simplest way of converting the "mapping diagram" of a one-to-one
function f into the analogous diagram for the inverse function f -I?

*~9. We say that there is a one-to-one correspondence between two sets A and B
if there is a one-to-one function with domain A and range B. Two sets are
said to have the same number of elements if there is a one-to-one correspondence
between them. Show that the set of all even numbers has the same number of
elements as the set of all odd numbers.

*30. A set A is said to have n elements if there is a one-to-one correspondence between
A and the set {l, 2, ... , n} made up of the first n positive integers. If a set A
contains n elements, where n is some positive integer, we say that A is finite;
otherwise A is said to be infinite. (An empty set is regarded as finite.) Which
of the following sets are finite and which infinite?
(a) The set of all cells in a human body;
(b) The set of all integers less than 1,000;
(c) The set of all integers greater than 1,000,000;
(d) The set of all right triangles whose side lengths are integers.

2.2 MORE ABOUT FUNCTIONS

A variable whose values are all real numbers is called a real variable, and a
function whose values are all real numbers is called a numerical function. Calculus
is primarily concerned with numerical functions of one or more real variables, and
these are the only functions to be considered in the rest of this book. Thus, from
now on, when we use the words "function" and "variable" without further qualifica-
tion, we will always mean a numerical function and a real variable, just as the word
"number" always means a real number.

2.21. Two functions f(x) and g(x) are said to be identically equal, and we
write f(x) == g(x), if the functions have the same domain X and if f(x) = g(x) for
all x in X. Note the distinction between the ordinary equals sign = and the sign ==
with three bars.

For example, the two functions

1 1
f(x) = 2 (x + 1) - 2 (x - 1)
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1 1
g(x) = "2 (1 + x) + "2 (1 - x)

are both identically equal to the constant function 1. An equation like
1 1
"2 (1 + x) + "2 (1 - x) == 1,

involving the sign ==, is called an identity.

2.22. Composite functions

8. Functions are often combined by letting the arguments of one function
equal the values of another. In this way, we get composite functions like f(g(x»
and g(f(x». For example, suppose

f(x) = 1 + x, (1)

Then straightforward substitution shows that

f(g(x» = 1 + g(x) = 1 + x2

and
g(f(x» = [f(xW = (1 + X)2.

In the same way,
f(f(x» = 1 + f(x) = 2 + x

and
g(g(x» = [g(xW = x4.

Things are not always this simple. For example, suppose

(2)

Then
f(x) = JX, g(x) = -lxI-

f(g(x» = ~I
fails to exist for every value of x except x = O. This shows that a composite function
is defined only for values of the independent variable such that the values of the
"inner function" belong to the domain of the "outer function."

Never make the mistake of confusing the composite function f(g(x» with the
product function f(x)g(x). For example, the product of the functions (1) is

f(x)g(x) = (1 + x)x2 = x2 + x3,

which is not the same as the composite function (2).
b. Let y = f(x) be a one-to-one function, with inverse x = f-l(y). Sub-

stituting y = f(x) into x = f-l(y), and then substituting x = f-l(y) into y = f(x),
we get the important pair of identities

(3)

involving the composite functions f-l(f(X» and f(f-l(y». These formulas tell us
that each of the functions f and f - 1 "nullifies" the action of the other.

2.23. Sequences

8. A function f whose domain is the set {1, 2, ... } of all positive integers is
called an infinite sequence, or simply a sequence, and the values of fat n = 1,2, ...
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are called the terms of the sequence. More informally, a sequence is a rule or procedure
assigning a number to every positive integer. We can write a sequence by listing
some of its terms

f(1),j(2), ... ,j(n), ... , (4)

where f(n) is called the general term of the sequence. The first set of dots in (4) means
"and so on up to," while the second set means "and so on forever." It is customary
to save a lot of parentheses by simply writing

(5)

instead of (4). A more concise way of specifying the sequence (5) is to write its general
term inside curly brackets:

{f,,}.

Do not confuse {f,,} in this context with the set whose only element is f". Note that
the terms of a sequence are always listed in such a way that the integers 1,2, ... , n, ...
appear in their natural order, increasing from left to right, as in (4) and (5).

b. Again there is nothing sacred about the letter f, and other letters will do
just as well. Common choices are small Latin letters like a, b, c, sand x. Although,
strictly speaking, Xn is the general term of the sequence {xn), we will often talk about
"the sequence xn." For example, suppose {xn} is the sequence such that Xn = n2•

Then we might talk about "the sequence Xn = n2," or simply "the sequence n2."

c. The "law of formation" of a sequence is often given explicitly as a formula
for its general term, as in the above example of the sequence xn= n2. A sequence
may also be given recursively, that is, by showing how each term can be obtained
from terms with lower subscripts. For example, suppose that

Then

Xl = 1,
Xn = Xn-l + n if n > 1

(6)

X4 = X3 + 4 = 10, ...

This sequence can be written as 1, 3,6, 10, ... , but this does little more than suggest
how the sequence was actually arrived at. A rule like (6) is called a recursion formula.

PROBLEMS

1. What is the largest set of numbers x for which the following identities are true?

(a) ~ = 1; (b) x = (JXY; (c) X =p.
x

2. Find values of a and b in the formula f(x) = ax2 + bx + 5 such that

f(x + 1) - f(x) = 8x + 3.

3. Let f and g be two numerical functions with the same domain X. Then by the
sum f + g we mean the function with domain X whose value at every point
x E X is just the sum of the value of f at x and the value of g at x. More
concisely,

(f + g)(x) = f(x) + g(x).
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Other algebraic operations are defined similarly. Thus

fg(x) == f(x)g(x)
j"(x) == f(x)f(x) ... f(x),

'-y------'
n ractors

and so on.
Suppose that

1
f(x) = 1 + x' g(x) = .jXT-.

Find the values of f + g, f - g, fg, f3 and fig all at x = 5.
4. Let

1
f(x) = -,

x

Find f(f(x», f(g(x)), g(f(x)) and g(g(x)).
5. Let

1
h(t) = --.

1 - t

Find h(h(h(2))).
6. "In general, f(g(x)) == g(f(x) )." True or false?
7. Write the first five terms of the sequence {a.} with general term

n 1 (-lrl
(a) a. = n + 1; (b) a. = n(n + 1); (c) a. = n ;

{

I for even n,
(d)a=1

• - for odd n.
n

8. Let {x.} be the sequence 1, 3, 5, ... , 2n - 1, ... of all odd numbers written in
increasing order, and let Sl = Xl, S2 = Xl + X2,"', S. = Xl + X2 + ... + X., •.•

Write the first few terms of the sequence {s.}, and find a simple expression for
its general term.

*9. A sequence {x.} is specified by the following rule: Its first two terms equal 1,
and the remaining terms are given by the recursion formula

(n = 3,4, ... ).

Write the first eight terms of this sequence, known as the Fibonacci sequence.
*10. Find the terms al, a3, a4 and a7 ofthe sequence {a.} determined by the formula

.J2 = l.ala2 ••• a•...
*11. Let

{

I if
f(x) = -xl if

if

- 00 < X < -1,
-1 ::::;X ::::; 1,
1 < X < 00,

Prove that f(x) == g(x).
*12. Does f(x)g(x) == 0 always imply f(x) == 0 or g(x) == O?
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*13. Let

1
f(x, y) = 2 + 2'

X Y

Find f(g(2), h(2) ).

2.3 GRAPHS

h(t) = )t.

2.31. a. Let F(x, y) be a numerical function of two real variables x and y.
Then by the solution set of the equation

F(x, y) = 0

we mean the set of all ordered pairs (x, y) for which (1) holds. For example, if

F(x, y) = xy,

then (1) becomes the equation

(1)

xy = 0, (2)

which implies that either x = 0 or y = 0 (or both). Therefore the solution set of (2)
is the set of all ordered pairs of the special form (x, 0) or (0, y), where x and yare
arbitrary numbers.

Similarly, if

F(x, y) = x2 + y2,

we get the equation

x2 + y2 = O. (3)

But (3) implies that both x = 0 and y = O. Therefore the solution set of (3) is the
set whose only element is the pair (0,0).

b. Let S be the solution set of equation (1). Then there is a simple way of
"drawing a picture" of S. First we introduce a "system of rectangular coordinates,"
that is, we set up perpendicular axes Ox and Oy in the plane, as in Sec. 1.71. Next
we plot all the elements of S as points in the xy-plane; since all the elements of S
are ordered pairs of numbers, this can be done in the way described in Sec. 1.72.
These points make up a "picture," called the graph of S, or, equivalently, the graph
of equation (1). For example, the graph of equation (2) consists of the coordinate
axes themselves, while the graph of equation (3) consists of a single point, namely
the origin of coordinates.

c. We can apply the same technique to a function

y = f(x) (4)

of a single variable x. Let S be the set of all ordered pairs (x, y) for which (4) holds.
Then, plotting all the elements of S as points in the xy-plane, we get a "picture,"
called the graph of S, or, equivalently, the graph of the function (4). For example,
according to Sec. 1.9, the graph of the function

y=mx+b

is just the straight line with slope m and y-intercept b.
d. The word "graph" will also be used as a verb, meaning "find the graph of."
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Note that (4) is a special case of (1), corresponding to the choice F(x, y) = y - j(x).
Thus the graph of a function is the graph of a special kind of equation.

e. The graph of an equation or function typically looks like a "curve," possibly
made up of several "pieces." With the help of calculus methods, we will eventually
become proficient at "curve sketching," learning how to draw the graph of a func-
tion without explicitly plotting more than a few points. The graph of an equation
F(x, y) =0 or of a function y = f(x) is often simply called "the curve F(x, y) = 0"
or "the curve y = f(x)."

2.32. Examples

a. Graph the equation

(5)

SOLUTION. Since x2 + l is the square of the distance between the point
(x, y) and the origin 0 (Sec. 1.74), the point (x, y) belongs to the graph of (5) when
the distance between (x, y) and 0 equals 1, and only then. Therefore the graph of (5)
is the circle of radius 1 with its center, at 0, as shown in Figure 2.

b. Graph the equation

x2 - 6x + y2 - 4y + 9 = O. (6)

SOLUTION. First we "complete the squares" in (6), by noting that

x2 _ 6x + y2 - 4y + 9 = (x2 - 6x + 9) + (y2 - 4y + 4) - 4
= (x - W + (y - 2)2 - 4,

so that (6) is equivalent to

(x - W + (y - 2)2 = 4.

But the expression on the left is just the square of the distance between the variable
point (x, y) and the fixed point (3, 2). Therefore the graph of (6) is the circle of radius
J4 = 2 with its center at the point (3,2), as shown in Figure 3. Note that the x-axis
is tangent to the circle at the point (3, 0).

y

x

Figure 2,
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c. Graph the function

Figure 3.'

(7)y = IxI-
SOLUTION. If X ~ 0, then Ixl = x and (7) reduces to the straight line

y=x

with slope 1 going through the origin, while if x < 0, then Ixl = - x and (7) reduces
to the straight line

y = -x

with slope - 1 going through the origin. Therefore the graph of the function (7) is
the curve shown in Figure 4, made up of "pieces" of the lines y = x and y = - x.
Note that the curve has a sharp "corner" at ~he origin.

A function like y = lxi, whose graph is made up of pieces of two or more straight
lines, is said to be piecewise linear.

y

y = Ixl

x
"-,
'y =-x

Figure 4.
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d. Graph the function

(8)
SOLUTION. The graph of (8) is the curve shown in Figure 5, known as a pa-

rabola. The x-axis seems to be tangent to the curve at the origin, and moreover the
curve "opens upward" along its whole extent. These ideas will be made precise later,
when we introduce the concepts of the "tangent to a curve" and "concavity."

The curve y = x2 has another interesting property, namely. it is symmetric in
the y-axis. This simply means that for every point P of the curve on one side of the
y-axis, there is another point Q of the curve on the other side such that the y-axis
is the perpendicular bisector of the line segment PQ. To see that this is true, we
merely note that changing x to -x has no effect on the value of y = x2, since
(- xf = x2• But the points P = (x, y) and Q = (- x, y) clearly lie on opposite sides
of the y-axis, and the y-axis is the perpendicular bisector of the horizontal segment
PQ, as the figure makes apparent.

A function f(x) is said to be even if f( - x) == f(x), where it is tacitly assumed
that the domain of f(x) contains -x whenever it contains x~ We have just shown
that the function f(x) = x2 is even and that its graph is symmetric in the y-axis.
Clearly, the graph of every other even function has the same symmetry property.
For example, the function f(x) = Ixl is even, since 1-xl == Ix/. and hence the graph
of y = Ixl is symmetric in the y-axis, as is apparent from Figure 4.

e. Graph the function

(9)

SOLUTION. The graph of (9) is the curve shown in Figure 6, known as a cu-
bical parabola. This curve seems to "open downward" to the left of the origin and
"upward" to the right of the origin, while changing from "downward" to "upward"
at the origin itself, which is accordingly called an "inflection point" of the curve.
All these ideas will be made precise later, in connection with our discussion of
"concavity."

The curve y = x3 has another interesting property, namely it is symmetric in
the origin. This simply means that for every point P of the curve, there is another
point Q of the curve such that the origin is the midpoint of the line segment PQ
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(thus P and Q are, so to speak, on "opposite sides" of 0). To see that this is true,
we note that changing the sign of x also changes the sign of y = x3, since (_X)3 =
- x3• But the points P = (x, y), Q = (- x, - y) and 0 = (0,0) are collinear, as follows
at once from the observation that the slope of the line through 0 and P has the
same value y/x as the slope of the line through Q and O. Moreover, 0 is clearly the
midpoint of the segment PQ, since

IOPI = IOQI = .Jx2 + y2.

A function f(x) is said to be odd if f( - x) == - f(x), where it is again assumed
that the domain of f(x) contains -x whenever it contains x. We have just shown
that the function f(x) = x3 is odd and that its graph is symmetric in the origin.
Clearly, the graph of every other odd function has the same symmetry property.
For example, every line y = mx through the origin has this property.

The problem of evenness versus oddness plays an important role in applied
mathematics and physics. The question "What is the parity of f(x)?" simply means
"Is f(x) even or odd?"

2.33. Increasing and decreasing functions

a. Suppose the graph of a function f(x) rises steadily as a variable point P on
the graph moves from left to right, with its abscissa in some interval I. Then f(x)
is said to be increasing in I. For example, the functions Ixl and x2 are both increasing
in the interval 0 :::;x < 00, as we see at once from Figures 4 and 5, while the function
x3 is increasing on the whole real line, that is, in the whole interval - 00 < x < 00,

as we see from Figure 6. Similarly, if the graph of f(x) falls steadily as P moves from
left to right with its abscissa in an interval I, we say thatJ(x) is decreasing in I. For
example, the functions Ixl and x2 are both decreasing in the interval - 00 < x ,,;; 0,
as is again apparent from Figures 4 and 5.

b. The graph of the constant function f(x) == 1 is simply the horizontal line
y = 1, which neither rises nor falls. Therefore this function is neither increasing nor
decreasing, in every interval. The same is true of any other constant function.

c. It is easy to give a purely algebraic definition of increasing and decreasing
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functions. Thus a function f defined in an interval I is said to be increasing in I if
f(x) < f(x') whenever x and x' are two points of I such that x < x'. Similarly, f is
said to be decreasing in I if f(x) > f(x') whenever x and x' are two points of I such
that x < x'.

PROBLEMS

1. What is the graph of the equation x2
- l = O?

2. What is the graph of the equation x2 + y2 + 2x - 2y + 1 = O?
3. What is the equation of the circle of radius 2 with its center at the point ( - 2, 3)?
4. "No line parallel to the y-axis can intersect the graph of a function y = f(x) in

more than one point." True or false?
5. "No line parallel to the y-axis can intersect the graph of an equation F(x, y) = 0

in more than one point." True or false?
6. Neither of the graphs in Figures 2 and 3 is the graph of a function. Why not?
7. What is special about the graph of a one-to-one function y = f(x)?
8. Let G be the graph of the function f(x). Describe the graphs of the functions

f(x) + c and f(x + c).
9. Which of the following functions are even and which are odd?

x2
(f) y = --.

x2 + 1

(a) y == 2; (b) y = x + 1;
1

(c) y = -;
x

1
(d) Y = Ix\;

10. Show that the function
y = xn (n = 1,2, ... ) (10)

is even if n is even and odd if n is odd.
Comment. By xn we mean, of course, the nth power of x, that is,

xn = X • X ••• x.
'---v----'

11 factors

11. Show that the product of two functions of the same parity is even, while the
product of two functions of different parity is odd.

12. "If the function f(x) is increasing in an interval I, then the function - f(x) is
decreasing in I, and conversely." True or false?

13. What is the equation of the circle circumscribed about the square with vertices
(0,0), (0, 1), (1,0) and (1, I)?

14. Given the graph of a one-to-one function y = f(x), how does one find the
graph of the inverse function x = f -I(y)?

15. Show that if a function f is increasing, then f is one-to-one, with an increasing
inverse f-I.

16. Show that if a function f is decreasing, then f is one-to-one, with a decreasing
inverse f-I

*17. Graph the function y = Ix + 11 + Ix - 11- Is the function piecewise linear?
Where is the function increasing and where decreasing? What happens in the
interval - 1 ::::;;x ::::;;I?

*18. Graph the function y = Ixl + Ix + 11 + Ix + 21. Is the function piecewise
linear? Where does the graph have corners? Where is the function increasing
and where decreasing?
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*19. Show that if 0 < x < x', then 0 < x" < x'" for all n = 1,2, ...
*20. Show that if n is even, then the function (10) is increasing in the interval

o :::;;x < 00 and decreasing in the interval - 00 < x :::;;0, while if n is odd,
then the function is increasing in the whole interval (- 00, 00).

2.4 DERIVATIVES AND LIMITS

2.41. An instructive calculation

a. We now make a little calculation, leading us straight to the heart of our
subject. Consider the function

(1)

defined for all nonzero values of h. Do not be disconcerted by our use ofthe "offbeat"
letter h for the independent variable; this is a deliberate choice, made to avoid "tying
up" the letter x, which will be needed a little later. We cannot allow h = 0 in (1),
because Q(h) would then reduce to the expression . .

Q(O) = (1 + 0)2 - 1 = ~ = Q
o 0 0'

which is meaningless. In fact, if % is to make sense, it must mean the one and only
number c such that O' C = O. But every number c has this property! For this rea-
son, the expression % is often called an indeterminate form.

Despite the fact that Q(O) itself is meaningless, the function Q(h) is perfectly
meaningful for values of h which are as close as we please to 0, whether these values
of h be positive or negative. Thus it is only natural to ask: What happens to Q(h)
as h gets "closer and closer" to the forbidden value h = O?

b. To answer this question, we first carry out the algebraic operations in the
numerator of Q(h), obtaining

Q(h) = 1 + 2h + h2 - 1 = 2h + h2
h h (h # 0).

We then divide the numerator by the denominator h, which is permissible since
h # O. This gives the simple formula

Q(h) = 2 + h (h # 0).

We now observe that as h gets "closer and closer" to 0, Q(h) in turn gets "closer and
closer" to 2. In fact, the distance between Q(h) and 2, regarded as points of the real
line, is just

IQ(h) - 21 = 1(2 + h) - 21 = Ihl
(Theorem 1.55), and Ihl is certainly very small whenever h is very near 0, for the
simple reason that Ihl is just the distance between hand O.

The fact that Q(h) gets "closer and closer" to 2 as h gets "closer and closer" to 0
is summarized by writing

lim Q(h) = 2.
h-O

(2)

In words, (2) says that "the limit of Q(h) as h approaches zero equals 2." This is our
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first encounter with the concept of a limit, about which we will say much more later.
An equivalent way of writing (2) is

Q(h)-> 2 as h -> 0,

which says that "Q(h) approaches 2 as h approaches zero."
c. We have just killed two birds with one stone. Not only have we calculated

the limit of Q(h) as h approaches zero, but as we will see in a moment, we have also
calculated something called "the derivative of the function f(x) = x2 at the point
x = 1." In fact, both the limit and the derivative equal 2.

2.42. The derivative concept

a. Let f(x) be a function defined in some neighborhood of a point xo. Then by the
difference quotient of f(x) at Xo, we mean the new function

Q(h) = f(xo + h) - f(xo)
h

(3)

of the variable h. The letter Q stands for "quotient," and Xo has a subscript zero to
show that it is a fixed value of the argument x. For example, if f(x) = x2 and
Xo = 1, then (3) reduces to

which is nothing other than the expression (1).
b. Let Q(h) be the difference quotient of the function f(x) at the point xo.

Then by the derivative of f(x) at the point xo, denoted by f'(xo) and pronounced
"f prime of x zero," we mean the limit

lim Q(h),
h-O

(4)

(5)

provided that the limit "exists" (that is, makes sense). Here, as in formula (2), the
expression (4) means the number, if any, which "Q(h) approaches as h approaches
zero." Combining (3) and (4), we find that

f'( ) - l' f(xo + h) - f(xo)xo - 1m h .
h-O

It is important to note that f'(xo) is a number, not a function. Suppose once
again that f(x) = x2 and xo = 1. Then

1'(1) = lim (1 + ht - 1 = lim (2 + h) = 2.
h-O h-O

Thus the derivative of the function f(x) = x2 at the point x = 1 exists and equals 2.
This justifies the claim made in Sec. 2Alc.

c. The derivative f'(xo) is also called the rate of change ofy = f(x) with respect
to x at the point xo. The reason for this designation is not hard to find. The nu-
merator of the difference quotient (3) is just the change

f(xo + h) - f(xo)

in the dependent variable y = f(x) when the independent variable x is changed
from xo to xo + h, while the denominator of (3) is just the change

(xo + h) - xo = h
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(6)

in x itself. Therefore the difference quotient itself becomes

Q(h) = Change ~nY,
Change In x

and the derivative is the "limiting value" of this "change ratio" as the change in the
independent variable x gets "smaller and smaller," that is, "approaches zero." As for
the word "rate," which suggests something changing with respect to time, it is a
metaphor borrowed from problems involving motion, where the independent variable
is indeed time (usually denoted by t), and the dependent variable changes with respect
to time at a certain "rate."

d. In Sec. 1.12 we described calculus as the "mathematics of change" and
formulated the two basic types of problems with which calculus deals. The first of
these problems was stated in the following unsophisticated language:

(1) Given a relationship between two changing quantities, what is the rate
of change of one quantity with respect to the other?

We are now in a position to restate this problem in more precise language:

(1') Given a function y = f(x), what is the rate of change of y with respect
to x?

The study of this problem is the province of a branch of calculus known as differential
calculus and always involves the calculation of a derivative.

2.43. Examples

a. Find the derivative of the function f(x) = x2 at an arbitrary point xo'
SOLUTION. For this function we have

f'() I' f(xo + h) - f(xo) I' (xo + W - x~
Xo = 1m------- = 1m------,

h-O h h-O h

which becomes

f'( ) - I' x~ + 2xoh + h
2
- x~ I' 2xoh + h

2
I' (2 h)Xo - 1m----h---- = 1m--h-- = 1m Xo + ,

h-O h-O h-O

after doing a little algebra. But as h gets "closer and closer" to 0, the quantity 2xo + h
gets "closer and closer" to 2xo, for the simple reason that the distance between the
points 2xo + hand 2xo is just

j(2xo + h) - 2xol = IhI-
Therefore

lim (2xo + h) = 2xo,
h-O

so that finally

f'(XO) = 2xo.

Note that f'(xo) = 2 when Xo = 1, as we already know from the preliminary cal-
culation made in Sec. 2.42b.

b. Let

f(x) = mx + b, (7)

where m and b are constants. Find the derivative of f(x) at an arbitrary point Xo.
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SOLUTION. In this case,

f'() l' m(xo + h) + b - mxo - b l' mh l'xo = 1m = 1m -h = 1mm = m.
h-O h h-O h-O

The last step calls for finding the number to which m gets "closer and closer" as
h --+ 0, but this can only be the number m itself, since m is a constant! Choosing m = 0
in (7), we find that the derivative of any constant function f(x) == b equals 0 at every
point Xo' Choosing m = 1, b = 0 in (7), we find that the derivative of the function
f(x) = x equals 1 at every point xo'

You will recognize (7) as the equation of the straight line with slope m and
y-intercept b. Since the derivative of (7) equals m at every point Xo, you may begin
to suspect that the derivative has something to do with slope. Indeed it has. In
Sec. 2.52d we will see that the derivative !'(xo) is just the slope of the tangent to the
curve y = f(x) at the point with abscissa Xo. Of course, this will require that we
first decide what is meant by the "tangent to a curve." Note that the word "tangent"
as used here has nothing to do with the same word as used in trigonometry (Sec. 1.82b).
In fact, the tangent to a curve is a line, while the tangent of an angle is a number.

2.44. Limits

a. So far we have only considered limits of the form

lim Q(h),
h-O

where the function Q(h) is the difference quotient associated with another function
f(x). This, of course, is the special kind of limit leading to the notion of a derivative.
More generally, we can consider the limit of an arbitrary function f(x) as its argument
x approaches an arbitrary point Xo, provided that f(x) is defined in some deleted
neighborhood of Xo (Sec. 1.63a). Thus we say that a function f(x) approaches the
limit A as x approaches Xo, or that f(x) has the limit A at Xo, if f(x) gets "closer and
closer" to A as x gets "closer and closer" to Xowithout ever actually coinciding with
Xo. This fact is expressed by writing

or

lim f(x) = A (8)

f(x) --+ A as x --+ xo'

Put somewhat differently, (8) means that f(x) is "arbitrarily near" A for all x which
are "sufficiently near" Xo, or, equivalently, that If(x) - AI is "arbitrarily small" for
all "sufficiently small" (but nonzero) values of Ix - xol.

b. Can this rather intuitive definition of a limit be made mathematically exact?
Yes, it can, by resorting to the following procedure, invented by Cauchy in the early
nineteenth century, which involves two positive numbers, traditionally called e (the
Greek letter epsilon) and b (the Greek letter delta). What does it really mean to say
that If(x) - AI is "arbitrarily small" for all "sufficiently small" Ix - xol? Just this:
Suppose somebody we call the "challenger" presents us with any positive number e.
he pleases. Then we must be able to find another positive number b such that
If(x) - AI < e for all x (;6 xo) satisfying the inequality Ix - xol < b. At this point,
you may well ask: What has all this to do with the numbers If(x) - AI and Ix - xol
being small? The answer is simply that we allow our challenger to present us with
any positive number whatsoever, in particular, with a number which is as small as
he pleases (that is, "arbitrarily small"). We must then find a corresponding number b,
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(9)

which in general cannot be "too large" (and hence is "sufficiently small") such that
If(x) - AI < e whenever Ix - xol < {).

Thus, once again, in more concise language, to say that f(x) has the limit A at
Xo means that, given any e > 0, we can find a number {) > 0 such that If(x) - AI < e
whenever 0 < Ix - xol < {).Here the formula 0 < Ix - xol < {)is just a neat way
of writing Ix - xol < {)and x "# Xo at the same time, since Ix - xol > 0 is equiv-
alent to x "# xo.

You may find this definition a bit strange, but we urge you to master it anyway.
It is a most valuable tool, which wilI help you keep many calculations brief and to
the point (see Probs. 12-15, for example).

c. The fact that x is not allowed to take the value Xo in the definition of the
limit of f(x) at Xo is crucial. It shows that the limit (if any) of f(x) at Xo has nothing
to do with the value of f(x) at x = xo, since this value does not even enter into the
definition of the limit. In fact, a function can have a limit even at a point Xo where
it fails to be defined! For example, the limit of the function

Q(h) = f(xo + h) - f(xo)
h

as h ~ 0 is the derivative f'(xo), a fundamental concept of calculus, and yet Q(h) is
undefined at h = 0, where it reduces to the indeterminate form 0/0.

d. It is often convenient to talk about having a limit without specifying what
the limit is. Thus we say that a function f(x) has a limit at Xo if there is some number
A such that f(x) ~ A as x --+ Xo.

2.45. Examples

a. Let Xo be an arbitrary point. Then

lim x = Xo,
x ...•xo

as we would certainly hope! This can be seen at once by using "e,{)language." In fact,
given e > 0, we need only choose {)= e. It is then self-evident that Ix - xol < e
whenever 0 < Ix - xol < {).

b. The constant function f(x) == A approaches the limit A as x approaches an
arbitrary point xo. In fact, in this case If(x) - AI == IA - AI == 0, so that, given
any e > 0, we have If(x) - AI < e for all x, and in particular for all x such that
o < Ix - xol < b, where b > 0 is arbitrary.

c. The function f(x) = 3x approaches the limit 6 as x --+ 2. In fact, given any
e > 0, choose b = e/3. We then have

If(x) - 61 = 13x - 61 = 31x - 21 < 3b = e

whenever 0 < Ix - 21 < {).
d. Show that

(10)

SOLUTION. It seems plausible enough that as a number gets "closer and
closer" to 2, its square must get "closer and closer" to 4, and this is an acceptable, if
somewhat crude, solution. A better solution is based on the use of "e,b language"
and goes as follows: Given any e > 0, let b be the smaller of the two numbers 1 and
e/5. Then

eIx2 - 41 = I(x + 2)(x - 2)1 = Ix + 21 Ix - 21 < 5'"5 = e
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whenever 0 < Ix - 21< b, since our choice of b automatically forces x to satisfy
the extra condition Ix + 21< 5, as well as Ix - 21< e/5. To see this, note that
Ix - 21< b certainly implies Ix - 21< 1, or equivalently 1 < x < 3, so that
3 < x + 2 < 5, which in turn implies Ix + 2\ < 5.

Actually, even this solution is only a "stopgap measure." In Sec. 2.61 we will
show that

lim XZ = lim x. lim x = (lim x)' z
x-2 x-2 x-2 x-2

and then (10) will be an immediate consequence of (9), with Xo = 2.
e. Does the function

f(x) = Ixl
x

(x -:f. 0)

have a limit at x = O?
SOLUTION. No, If x > 0, then Ixl = x and f(x) = 1, while if x < 0, then

Ixl = - x and f(x) = -1. Therefore f(x) takes both values 1 and -1 in every
deleted neighborhood of x = 0, But then f(x) can hardly be "arbitrarily near" some
number A for all x "sufficiently near" 0, even if we pick A = 1 or A = -1. This
intuitive solution seems plausible, but its crudity is rather distressing. Again "e,b
language" comes to the rescue, providing us with a solution which is both simple
and perfectly sound. Suppose fix) has a limit A at x = O. Then, choosing I> = t we
can find a number 5 > 0 such that If{x) - AI < I> = !whenever 0 < Ixl < 5. Let Xl

= !5, Xz = - !5, so that, in particular 0 < Ix!1 < 5, 0 < IXzl < 5. Then, on the one
hand,

f(xz) = -1,

while, on the other hand,

1
If(xz) - AI < 2'

But these requirements are incompatible. In fact, using the triangle inequality (3),
p. 14, we find that

If(Xl) - f(xz)1 = l[f(xl) - A] + [A - f(xz)]I
1 1

~ If(xd - AI + IA - f(xz)1 < 2 + 2 = 1,

while, at the same time,

If(xd - f(xz)1 = 11 - (-1)1 = 2.
Thus the assumption that f(x) has a limit at x = 0 has led to the absurd conclusion
that 2 < 1. Therefore f(x) does not have a limit at x = O.

f. Does the function f(x) = Ixl have a derivative at x = O?
SOLUTION. No, since

1'(0) = lim f(O + h) - f(O) = lim 10 + hi - 1°1 = lim ~
h"'O h h"'O h h"'O h'

or

1'(0) = lim~,
x"'o x
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if we denote the independent variable by x instead of by h, which is our privilege. But
we have just shown that this limit fails to exist.

PROBLEMS

1. Let f(x) = ax2 + bx + c, where a, band c are constants. Verify that f'(xo) =
2axo + b at every point xo.

2. Let f(x) = x3• Verify that f'(xo) = 3x~ at every point xo'
Comment. Problems 1 and 2 are just "warming up exercises." The tech-

nique of evaluating derivatives will be developed more systematically in Sec. 2.7.
3. Is the formulaf'(1X + f3) = f'(IX)+ f'(f3) true for f(x) = mx + b? For f(x) = x2?
'4. Can f'(xo) ever equal f(xo)?
5. Show that f(x) -+ A as x -+ Xo and f(x) - A -+ 0 as x -+ Xomean exactly the

same thing.
6. Find the limit

(a) lim Ixl;
x-o

(b) lim~;
x-o x

(c) lim Ixl;
x-I x

x2
(d) lim-;

x-o x
(e) limp.

x-o x

7. Does the function

f(x) = {x ~f 0::;; x ::;;1,
2x If l<x::;;3

have a limit at the point x = I? At the point x = 2?
8. Find the limit of the function

f(x) = { x
2
~f x t= 0,

2 If x=o
at the point
(a) x = -1; (b) x = 0; (c) x = Ji.

9. To find the number () in the "e, () language" must we know the number e? Is
() a function of e?

10. Show that if f(x) -+ 0 as x -+ Xo, then If(x)1 -+ 0 as x -+ Xo, and conversely.
*11. Show that if f(x) -+ A as x -+ Xo, then If(x) I -+ IAIas x -+ Xo' Is the converse

true?

The following problems are all easily solved with the help of "e, () language."
Make sure that you understand what these problems mean, even if you don't work
them out.

*12. Show that if f(x) has a limit at xo, then the limit is unique. In other words,
show that f(x) cannot have more than one limit at xo'

*13. Show that changing the value of a function f(x) at any point Xl t= Xohas no
effect on the limit (if any) of f(x) at xo.

Comment. Thus only the values of f(x) in the "immediate vicinity" of Xo
have any effect on the "limiting behavior" of f(x) at xo'

*14. Show that if f(x) -+ A as x -+ Xo, then there is a deleted neighborhood of Xo
in which If(x) I < IAI + 1.

Comment. Thus a function cannot become "too large" in absolute value
near a point where it has a limit.

*15. Show that if f(x) -+ A t= 0 as x -+ Xo, then there is a deleted neighhorhood of
Xo in which f(x) has the same sign as A and If(x) I > tiAI.
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Comment. Thus a function cannot change sign or even become "too small"
in absolute value near a point where it has a nonzero limit.

2.5 MORE ABOUT DERIVATIVES

2.51. Increment notation. The meaning of the derivative can be made even
clearer by using a somewhat different notation. Given a function y = f(x), let the
change in the independent variable, namely the difference between the final and
initial values of x, be denoted by L\x, instead of by h as in Sec. 2.42c. Here L\x, where
L\ is the Greek capital letter delta, must be thought of as a single entity, pronounced
"delta x," and not as the product of the separate symbols L\ and x. Let the corre-
sponding change in the dependent variable, namely the difference between the
final and initial values of y, be denoted by ~y ("delta y"), that is, let

L\y = f(xo + L\x) - f(xo)'

Then formula (6), p. 54, takes the particularly suggestive form

L\y
Q(L\x) = L\x'

where the reason for the term "difference quotient" is now staring you in the face.
We also call L\x the increment of x and L\y the increment of y. We will favor this
"increment notation" from now on, because of the way it identifies the quantities
which are actually being changed.

In terms of increment notation, formula (5), p. 53, defining the derivative of f(x)
at the point xo takes the form

f'( ) - l' f(xo + L\x) - f(xo)xo - 1m A •

~x-o uX

Bear in mind that in writing L\x ~ 0, we impose no restriction on the sign of L\x,
which is free to take both positive and negative values.

2.52. The tangent to a curve

a. In keeping with the remarks in Example 2.43b, we now decide what is meant
by the "tangent to a curve." You already know how the tangent is defined in the
case where the curve is a circle C. In fact, according to elementary geometry, the.
tangent to a circle C at a point Po is the line which intersects C in the point Po and
in no other point. A moment's thought shows that this property of the tangent to
a circle is useless for defining the tangent to a general curve. For example, in the
case of the parabola y = x2 graphed in Figure 7, there are two lines, namely the
x-axis and the y-axis, intersecting the curve in the origin 0 and in no other point.
But common sense rejects the idea of the y-axis being the tangent to the curve at 0,
although the x-axis seems a perfectly plausible candidate for the tangent to the
curve at O.

As this example suggests, the key property of the tangent is that it "hugs the
curve very closely at the point of tangency." For example, this seems to be true of
the line T in Figure 7, which represents the tangent to the parabola at the point Po,
We now give a precise mathematical meaning to this qualitative idea. As you may
suspect, the notions of limit and derivative will play a prominent role here.

b. Thus let Po = (xo, yo) be a fixed point and P = (x, y) a variable point of a
given curve y = f(x), and let S be the straight line going through the points Po and
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P. Such a line is called a secant (line) of the curve y = f(x). The slope of S is just

y - Yo
ms = ---,

x - Xo
or equivalently

in terms of the increments

(1)

Lly = y - Yo = f(xo + Llx) - f(xo)'

The geometrical meaning of these increments is shown in Figure 8, which is drawn
for the case where Llx and Lly are both positive. As an exercise, sketch similar figures
for the other three choices of the signs of Llx and Lly. All of these figures are equiv-

y
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I
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--------l----yo
I
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I
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alent from the standpoint of illustrating the construction of the tangent to the curve
y = f(x) at Po.

c. We now vary the point P along the curve, making P move "closer and closer"
to the fixed point Po, and at the same time allowing P to move freely from one side
of Po to the other. Then L\x approaches zero, and at the same time the secant through
Po and P varies, taking first one position and then another. Suppose the limit

m = lim ms
Ax-O

(2)

exists. Then the straight line through Po with slope m is called the tangent (line) to
the curve y = f(x) at the point Po. In other words, the tangent at Po is the "limiting
position" ofthe secant through Po and P as the variable point P approaches the fixed
point Po, taking positions on both sides of Po. This behavior is illustrated in Figure 9,
where the secants go through a sequence of positions 81> 82, 83, 84, ..• , getting
"closer and closer" to the limiting tangent line T. This figure also shows that, unlike
the case of a circle, the tangent to a general curve C may well intersect C in points
other than the point of tangency Po.

d. Finally, substituting (1) into (2), we find that

m = lim ~y = lim f(xo + ~x) - f(xo),
~-o~x ~-o ~x

where the limit on the right is, of course, just the derivative f'(xo) of the function f(x)
at the point xo' Thus we have proved the following key result of differential calculus:
The curve y = f(x) has a tangent T at the point Po = (xo, f(xo» if the derivative f'(xo)
exists, and only in this case. The slope of T is then equal to f'(xo)' This slope is often
simply called the slope of the curve at Po.

According to Sec. 1.91a, the equation of the straight line with slope m going
through the point (xo, Yo) is just

y = m(x - xo) + Yo.



62 Differential Calculus Chap. 2

Therefore the tangent to the curve y = f(x) at the point (xo, Yo) = (xo,f(xo» has
the equation

(3)

2.53. Examples

a. Find the tangent T to the parabola y = x2 at the point Po = (xo,Yo).
SOLUTION. Here f(x) = x2, and hence

f'(xo) = 2xo, (4)

as calculated in Example 2.43a. Substituting (4) into (3), we find that T has the
equation

(5)

(6)

since Yo = X6. Setting y = 0 and solving for x, we see at once that the line T has the
x-intercept xo/2. Thus, to construct the tangent to the parabola y = x2 at a point
Po other than the origin, we need only drop the perpendicular P oB to the x-axis,
bisect the segment OB, and then draw the line T joining the midpoint A of OB to
the point Po, as shown in Figure 7. If Po is the origin, then Xo = 0 and (5) reduces
to the equation y = O. Therefore in this case T is the line y = 0, namely the x-axis,
as conjectured in Sec. 2.52a.

b. Find the tangent T to the curve y = Ixl at the point (xo, Yo)'
SOLUTION. Here we have f(x) = IxI- If Xo > 0, then

f'(xo) = 1,

since f(x) = x for all x in a suitable neighborhood of xo. Substituting (6) into (3),
we find that T has the equation

y = 1. (x - xo) + Xo = x,

since Yo = Ixol = xo' Therefore in this case T is just the line y = x, as is geometri-
cally apparent from Figure lOA. On the other hand, if Xo < 0, we have

(7)

y

A

y

,,,,
y=-x

B
Figure 10.
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(8)

instead of (6), since now f(x) = - x for all x in a suitable neighborhood of xo, and
substitution of (7) into (3) gives

y = -1' (x - xo) - Xo = - x,

since in this case Yo = Ixol = -Xo' Therefore T is now just the line y = -x, as
is geometrically apparent from Figure lOB.

If Xo = 0, then f'(xo) fails to exist, as shown in Example 2.45f. Therefore the
curve y = Ixl has no tangent at the origin O. The reason for this is geometrically
evident from Figure lOe and is associated with the presence of the sharp "corner"
of the graph of y = Ixl at the origin. The secant drawn through the origin 0 and
a variable point P of the curve y = Ixl can hardly approach a "limiting position" as
P approaches 0, since the secant coincides with the line y = x whenever P lies to
the right of 0 (in the first quadrant) and with the perpendicular line y = - x whenever
P lies to the left of 0 (in the second quadrant). In fact, suppose P approaches 0
through a sequence of positions on both sides of 0, in keeping with the definition
of the tangent at O. Then the secant changes its inclination by a full 90° (in either
the clockwise or the counterclockwise direction) every time P goes from one side
of 0 to the other, and this "wild" behavior is clearly inconsistent with the secant
approaching any tangent line at all as P approaches O.

2.54. Differentiation

a. The process leading from a function to its derivative is called differentiation,
with respect to the independent variable. Another way of saying that a function
y = f(x) has a derivative at a point Xo is to say that f(x) is differentiable at xo' If
f(x) is differentiable at every point of an interval I, we say that f(x) is differentiable in
I. For example, the functionf(x) = Ixlis differentiable in both intervals - 00 < x < 0
and 0 < x < 00, although it fails to be differentiable at the point x = O. Whenever
we call a function differentiable, without further qualification, we always mean
differentiable at some point or in some interval, where the context makes it clear
just what is meant.

b. Suppose f(x) is differentiable in an interval I. Then the derivative

f'( ) - I' f(xo + 8x) - f(xo)Xo - 1m --------
&x-o 8x

exists for every Xo in I. Hence there is a new function defined in I, whose value at
every point Xois just f'(xo)' This new function, which we denote by (f(x) Y, or simply
by f'(x), is called the derivative of f(x), with no mention of a point xo' It will always
be clear from the context whether the term "derivative" refers to a function or to
a number, namely the value of the derivative function at some point. The results of
Examples 2.43a and 2.43b can now be written more concisely as

(x2)' = 2x, (mx + bY = m.

The derivative of a function y = f(x) is sometimes denoted simply by y'.

2.55. The differential

a. We will usually write (8) in the form

f'(x) = lim f(x + 8x) - f(x),
&x-o 8x

(9)
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,

dropping the subscript zero in three places. This is done with the understanding
that x is held fixed during the evaluation of the limit. The numerator ofthe difference
quotient in (9) is often denoted by /if(x) instead of by Ay. This has the advantage
of allowing us to make explicit the point x at which the increment Af(x) =

f(x + Ax) - f(x) is taken. We call /if(x) the increment of the function f at the point
x, where, as usual, Af is to be thought of as a single entity. In terms of this notation,
(9) takes the form

f'(x) = lim /if(x).
ll.x-O Ax

Equation (10) can also be written as

lim [/if(X) - f'(x)l = 0
ll.x-O Ax J

(Sec. 2.4, Prob. 5), or equivalently as

lim IX(Ax)= 0,
Ax-O

where

(
A ) = /if(x) - f'(x) Ax

IX uX Ax'

(10)

(11)

The numerator of IX(Ax)is just the error made in replacing Af(x) by f'(x) Ax, and,
according to (11), this error is small in absolute value compared to IAxl if IAxl is
small. Thus it is often a good approximation to replace /if(x) by the quantity f'(x) Ax,
called the differential of the function f at the point x. For the differential we introduce
the special notation

df(x) = f'(x) Ax, (12)

which stresses the connection between df(x) and the increment Af(x). As in the case
of Af, the symbol df must be thought of as a single entity, pronounced "dee f," and
not as the product of the separate symbols d and f. In the case of a function written
as y = f(x), we can write dy for df(x), just as we write Ay for /if(x). Then (12) taKes
the form

dy = f'(x) Ax. (13)

We will often drop arguments for brevity, writingf' for f'(x), df for df(x), and so on.
Thus formulas like df = f'(x) Ax or dy = f' Ax shouldn't bother you a bit.

b. Example. Find the increment Ay and the differential dy of the function
y = x2 for x = 20, Ax = 0.1. What is the error of the approximation Ay ~ dy?
(The symbol ~ means "is approximately equal' to.")

SOLUTION.

Ay = (x + Ax)2 - x2 = 2x Ax + (Ax)2,
dy = (x2)' Ax = 2x Ax,

and hence

Ay = 2(20)(0.1) + (0.1)2 = 4.01,
dy = 2(20)(0.1) = 4.00
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for x = 20, dx = 0.1. Thus the error of the approximation dy ~ dy is only 0.Ql,
about 0.25% of the actual value of dy.

2.56. The d notation

a. For the function y = f(x) = x, we have dy = dx, 1'(x) = 1, so that (13)
reduces to

dx = 1 . dx = dx.

In other words, the increment and the differential of the independent variable are
equal. We can now write

instead of (12), and

df(x) = 1'(x) dx,

dy = 1'(x) dx,

(14)

(15)

instead of (13). These formulas lead at once to an important new way of writing
derivatives, called the "d notation," which we will use freely from now on. Solving
(14) for 1'(x), we get

1'(x) = d~~),

or, without the arguments,

f' = df
dx'

This formula is read as "f prime equals dee f by dee x." Similarly, if y = f(x), it
follows from (15) and the last sentence of Sec. 2.54b that

y' = ~~ = 1'(x).

The advantage of the new notation, in which l' becomes df/dx and y' becomes
dy/dx is that the independent variable is now indicated explicitly. Thus there is a
distinction between

df df df
dx' dt' du"'"

(16)

which is not so easily made in the old notation; here x, t, u, ... indicate different
symbols for the independent variable. To distinguish between the different deriva-
tives (16) verbally, we call df/dx the derivative off with respect to x, df/dt the derivative
of f with respect to t, and so on. Such distinctions are often crucial.

b. Having learned enough about differentials to appreciate how the" d notation"
arises, there is no further need to think of derivatives as ratios of differentials. Rather
you should regard d/dx as a single entity, pronounced "dee by dee x" and called the
differentiation operator, which has the effect of differentiating with respect to x any
function written after it; for simplicity, the function is often written after the first
letter d in d/dx rather than after the whole expression. Thus, for example,

3:....f= df =1'
dx dx '

d
dx (f + g) = (f + g)',
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where the prime denotes differentiation with respect to x. Similar remarks apply to
differentiation operators like d/dt, d/du, and so on, where the independent variable
is indicated by another letter.

PROBLEMS

1. Find the increment ~x of the independent variable and the corresponding
increment ~y of the dependent variable for the function y = l/x2 if x is changed
from 0.01 to 0.001.

2. Let u = u(x) and v = v(x) be two functions of x, where, for simplicity, we use
the same letters to denote both the functions and the dependent variables.
Show that ~(u + v) = ~u + ~v.

3. Verify that the tangent to the line y = mx + b at every point of the line is just
the line itself, as is to be expected.

4. Does the curve y = x2 have two different tangents which are parallel? Does
the curve y = x3?

5. Does the curve y = x2 have two different tangents which are perpendicular?
Does the curve y = x3?

6. Find the tangent to the curve y = x2 going through the point (2,0). Note that
(2, 0) is not a point of the curve.

7. At what point of the cur~e y = x2 is the tangent parallel to the secant drawn
through the points with abscissas 1 and 3?

8. Find the value of x such that df(x) = 0.8 if f(x) = x2 and ~x = - 0.2.
9. Find the increment ~y and the differential dy of the function y = x3 if x = 1and

(a) ~x = 1; (b) ~x = 0.1; (c) ~x = 0.01; (d) ~x = 0.001.
In each case, find the error E = ~y - dy made in replacing Ay by dy, both as
a number and as a percentage of ~y. What happens as ~x gets smaller?

10. When is ~y ~ dya bad approximation?
*11. Let u = u(x) and v = v(x) be the same as in Problem 2. Write two different

expressions for ~(uv) in terms of ~u and ~v.
*12. For what values of band c does the curve y = x2 + bx + c have the line y = x

as a tangent at the point with abscissa 2?
*13. Where is the function y = Ix + 11+ Ix - 11differentiable? Where does the

graph of the function fail to have a tangent?
*14. How much would the earth's surface area increase if its radius were increased

by 1 foot?
*15. What is the geometrical meaning of the differential dy?

2.6 MORE ABOUT LIMITS

2.61. Algebraic operations on limits. The following basic theorem on limits is
used time and again in calculus. It merely says that "the limit of a sum equals the
sum of the limits," and similarly with the word "sum" replaced by "difference,"
"product" and "quotient."

THEOREM. If

lim f(x) = A,
X-XQ

lim g(x) = B,
X-Xo

(1)
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then
lim [f(x) + g(x)] = A + B,
x-Xo

lim [f(x) - g(x)] = A - B,
x-+xo

lim f(x)g(x) = AB,
x-xo
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(2)

(3)

(4)

(5)lim f(x) = ~
x ...•xo g(x) B'

provided that B :f. 0 in the last formula.
Proof. As you might expect, "e, (j language" is the thing to use here. Since

f(x) -+ A as x -+ Xo and g(x) -> B as x -+ Xo, then, given any e > 0, we can find
numbers (jl > 0 and (j2 > 0 such that If(x) - AI < e/2 whenever 0 < Ix - xol < (jl
and Ig(x) - BI < e/2 whenever 0 < Ix - xol < (j2' (Yes, we really mean e/2 here,
not e.) Let (j be the smaller of the two numbers (jl and (j2' Then, using our old
standby, the triangle inequality (3), p. 14, we have

l[f(x) + g(x)] - (A + B)I = l[f(x) - A] + [g(x) - B]I

e e
~ If(x) - AI + Ig(x) - BI < 2 + 2 = e

whenever 0 < Ix - xol < (j. But this is just "e,(j language" for the statement that
f(x) + g(x) -> A + B as x -+ Xo' Thus we have p~oved (2). To prove (3), we need
only note that

l[f(x) - g(x)] - (A - B)I = l[f(x) - A] + [B - g(x)] I
e e

~ If(x) - AI + IB - g(x)\ < 2 + 2 = e

whenever 0 < Ix - xol < (j.
To prove (4) and (5) we argue in the same way. For example to prove (4) we

show that, given any e > 0, there is a (j > 0 such that If(x)g(x) - ABI < ewhenever
o < Ix - xol < (j, and similarly for (5). However, the details are not very instructive,
and for that reason are left to Problem 15. You can work through this rather difficult
problem if you have a special interest in mathematical technique. Otherwise, per-
suade yourself of the validity of formulas (4) and (5) by thinking of their intuitive
meaning. 0

2.62. Examples

a. Show that
lim (x2 + 2x) = 15.
x"" 3

SOLUTION. We already know from Example 2.45a that

lim x = 3,
X"" 3

a result which is almost obvious. Therefore, using (4) twice, we have

lim x2 = lim x . lim x = 3 . 3 = 9

and
lim 2x = lim 2 . lim x = 2. 3 = 6
x-3 x-3 x-3

(6)
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(by Example 2.45b, "the limit of a constant equals the constant itself"). It then
follows from (2) that

lim (x2 + 2x) = lim x2 + lim 2x = 9 + 6 = 15.
x-3 x~3 x-3

b. Evaluate

I. X2 - 5x + 6
A= 1m 2 .

x-3 X - 8x + 15

SOLUTION. We have

. x2
- 5x + 6 . (x - 3)(x - 2) . x - 2

A = lim 2 = lim ----- = lim --,
x-3 X - 8x + 15 x-3 (x - 3)(x - 5) x-3 X - 5

where in the last step we cancel the common factor x - 3 of the numerator and
denominator, relying on the fact that x approaches 3 without ever being equal to 3,
so that x - 3 is never zero. Using (3) and (6), we have the easy calculations

lim (x - 2) = lim x - lim 2 = 3 - 2 = 1,
x-+3 x-3 x-3

lim (x - 5) = lim x - lim 5 = 3 - 5 = - 2.
x-3 x-3 x-3

It then follows from (5) that

2 lim (x - 2) 1 1
A = lim ~ = _x-_3 _

x-3x-5 lim(x-5) -2 2
x-3

2.63. Continuous functions

a. Once again we stress that the limit of a function f(x) at a point Xo is some-
thing quite different from the value of f(x) at xo, and in fact f(x) may not even be
defined at xo' There is a special name for a function "nice enough" to have a limit
at Xo which equals its value at Xo: Such a function is said to be continuous at xo'
In other words, we say that f(x) is continuous at Xo if

lim f(x) = f(xo)'
x-xo

(7)
Of course, this presupposes that f(x) is defined in some nondeleted neighborhood
of xo, so that both sides of (7) make sense. If formula (7) does not hold, we say that
f(x) is discontinuous at xo.

b. If a function f(x) is continuous at every point of an interval I,we say that
f(x) is continuous in I. When we call a function continuous, without further qualifica-
tion, we always mean continuous at some point or in some interval, where the context
makes it clear just what is meant. A function is said to be discontinuous, without
further qualification, if it is discontinuous at one or more points. The property of
being continuous is called continuity, and plays an important role in calculus.

c. Algebraic operations on continuous functions are governed by the following
rule:

THEOREM. If the functions f(x) and g(x) are both continuous at xo, then so are
the sum f(x) + g(x), the difference f(x) - g(x), the product f(x)g(x) and the quotient
f(x)/g(x), provided that g(xo) =1=0 in the case of the quotient.
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Proof. This is an immediate consequence of the corresponding theorem on
limits. Instead of (1), we now have

lim f(x) = f(xo),
x-xo

lim g(x) = g(xo).
x-xo

(8)

But then formulas (2) through (5) become

lim [f(x) + g(x)] = f(xo) + g(xo),
x-Xo

lim [f(x) - g(x)] = f(xo) - g(xo),

lim f(x)g(x) = f(xo)g(xo),
x-xo

lim f(x) = f(xo)
x-xc g(x) g(xo) ,

provided that g(xo) # 0 in the last formula, and this is exactly what is meant by
saying that the functions f(x) + g(x), f(x) - g(x), f(x)g(x) and f(x)/g(x) are con-
tinuous at xo' 0

d. COROLLARY. If the functions fl(X), f2(X), ... ,fn(x) are all continuous at xo,
then so are the sum fl(X) + f2(X) + ... + fn(x) and the product fl(X)f2(X)'" fn(x)

Proof. For example, if

h(x) = fl(X) + f2(X) + f3(X),

then h(x) = g(x) + f3(x), where g(x) = fl(X) + f2(X). One application of the theo-
rem just proved shows that g(x) is continuous at xo, being the sum of two functions
fl(X) and f2(X) which are continuous at xo, and then another application of the
theorem shows that h(x) is continuous at xo, being the sum of two functions
g(x) and f3(X) whi<;h are continuous at xo. The proof for products is virtually the
same. 0

2.64. Examples

a. Any constant function is continuous everywhere, that is, at every point xo'
In fact, if f(x) == c, then

lim f(x) = lim c = c = f(xo)'
x-xo X-Xo

Moreover, the function x is continuous everywhere, since, by Example 2.45a,

lim x = Xo
X-Xo

b. By a polynomial we mean a function of the form

P(x) = ao + alx + a2x2 + ... + anxn,

where ao, ai' a2, ... , an are arbitrary constants and n is a positive integer, called the
degree of the polynomial (if an # 0). Each term in the sum is continuous, by the
corollary and the preceding example, and hence so is the sum itself, by the corollary
again. Thus P(x) is defined and continuous everywhere, that is, in the whole interval
(- 00, (0).

c. By a rational function we mean a quotient of two polynomials

()
ao + alx + a2x2 + ... + anxn

R x = ------------
bo + b1x + b2x2 + ... + bNxN'

where nand N are in general different. It follows from the preceding example and
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the theorem that R(x) exists and is continuous except at the points (if any) where
the denominator of (8) equals zero. For example, the rational function

x
f(x) = 1 + x'2

is continuous in the whole interval (- 00,00), while

x2
g(x) = -1--2-x

is continuous everywhere except at the two points x = :!: 1.
d. The function Ixl is continuous everywhere. In fact,

lim Ixl = 0 = 101,
x ..•0

since x ~ 0 and Ixl ~ 0 mean exactly the same thing, while

lim Ixl = lim x = Xo = IXoj
X-xo X-Xo

if Xo > 0, and

lim Ixl = lim (-x) = -lim x = -Xo = Ixol
x-xo X-Xo X-Xo

if Xo < O. In the last two calculations, we use the fact that x has the same sign as
Xo if x is "sufficiently close" to xo.

e. The function

which can also be written

f(x) = Ixl
x

(x :F 0),

(9)f(x) = {-1 ~f x < 0,
1 If x > 0,

is discontinuous at x = 0, since, as shown in Example 2.4Se, it has no limit at x = O.
Moreover, there is no way of defining f(x) at x = 0 which will make f(x) continuous
at x = 0, since the failure of f(x) to have a limit at x = 0 has nothing to do with its
value at x = 0 (Sec. 2.44c).

f. The situation is different for the function

Here

g(x) = x (x :F 0). (10)

lim g(x) = 0,
x ..•o

and the function fails to be continuous at x = 0 only because the point x = 0 has
been excluded, rather artificially, from the domain of g(x). However, we can make
g(x) continuous at x = 0 by the simple expedient of setting g(O) equal to 0, by
definition. In this way, we can "remove the discontinuity" at x = 0, replacing the
discontinuous function (10) by the function x which is continuous everywhere. On
the other hand, if we set g(O) equal to 1, say, instead of 0, we get a new function

h(x) = {~ ~~ ~ ~ ~: (11)
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which is still discontinuous at x = 0, since

lim h(x) = 0 ¥- 1 = h(O).
x~o

g. To get a better idea of the behavior of discontinuous functions, we graph
the three functions (9), (10) and (11) in Figure 11, using hollow dots to indicate
"missing points." The solid dot in Figure llC indicates the "isolated point" (0,1)
belonging to the graph of the function (11). There is something about all these
graphs that shows us at a glance that each is the graph of a discontinuous function,
namely each graph behaves "pathologically" at x = O. Either the graph has no
point at all with abscissa 0, as in Figures lIA and lIB, or there is such a point, as in
Figure lIC, but it does not fall where it "ought to," namely at the origin. Moreover,
the graph in Figure llA has a "jump discontinuity" at x = 0, since a point moving
along the graph of f(x) from left to right has to make a "sudden jump" at x = 0 in
order to get from the line y = -1 to the line y = 1. The graph of a function which
is continuous in some interval cannot have "gaps" and "jumps" like these. Thus you
can think of the graph of a continuous function as one which can be drawn without
lifting pen from paper.

2.65. One-sided limits

a. Taking another look at Figure l1A, we are led at once to the idea of a
one-sided limit, for we can hardly help noticing that the function y = f(x) would
have a limit at x = 0, equal to either -lor 1, if we were to insist that x approach
the origin 0 from one side or the other, either from the left of 0, taking only negative
values, or from the right of 0, taking only positive values. In fact, under these cir-
cumstances, we could forget about the behavior of the function y = f(x) on the other
side of 0, regarding y = f(x) as either the constant function y == -Ion the left of
o or the constant function y == 1 on the right of O. If x approaches a point Xo from
the left, we write x --+ Xo -, while if x approaches Xo from the right, we write
x --+ Xo +. Thus we have just observed that in the case of the function (9), f(x) --+ -1
as x --+ 0 - and f(x) --+ 1 as x --+ 0 +, or equivalently

lim f(x) = -1,
x-o-

lim f(x) = 1,
x-o+

(12)

where the first limit is called the left-hand limit of f(x) at x = 0 and the second is
called the right-hand limit of f(x) at x = o.
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b. As you may have already guessed, there is also a kind of continuity in-
volving one-sided limits. In fact, if

lim f(x) = f(xo),
x-xo-

we say that f(x) is continuous from the left at xo, while if

lim f(x) = f(xo),
x ...•xo+

we say that f(x) is continuous from the right at xo. For example, the function f(x)
defined by (9) has the one-sided limits (12) at the point x = 0, so that f(x) can be made
continuous from the left at x = 0 by setting f(O) = -lor continuous from the right
by setting f(O) = 1 (remember that f(O) was not defined originally). However, there
is clearly no way to make this function continuous both from the left and from the
right at x = 0, since the one-sided limits (12) are different.

c. We now make a small improvement in our definition of a function which
is continuous in an interval I. In Sec. 2.63b we insisted that such a function be
continuous at every point of I. We now relax this requirement a bit, but only at the
end points of I. Suppose I contains its left end point, call it a. Then we require
only tHat f(x) be continuous from the right at a. This makes sense, since a point
which stays inside I can only approach a from the right. Similarly, if I contains its
right end point, call it b, we now require only that f(x) be continuous from the left
at b. Again this makes sense, since a point inside I can only approach b from the
left.

For example, the function

{
-I if x < 0,

f(x) = l'f 0
1 X ~ ,

differing from (9) only by having x ~ 0 instead of x > 0, is regarded as continuous
in the closed interval 0 ~ x ~ 1, even though it is not continuous at x = 0, because
it is continuous at every point x > 0 and continuous from the right at x = O.

2.66. We have already encountered a function Ixl which fails to have a deriva-
tive at a point (namely x = 0) where it is continuous. On the other hand, afunction
is automatically continuous at any point where it has a derivative. In fact, suppose
f(x) has a derivative f'(xo) at a point xo' Then

I. [f( A) f()] I' f(xo + dx) - f(xo) A1m Xo + LlX - Xo = 1m A LlX
Ll.x~o Ll.x~o LlX

I. f(xo + dx) - f(xo) I' AX= 1m ------- 1m Ll
Ll.x~o dx Ll.x~O

= f'(xo) lim dx,
Ax'" 0

with the help of Theorem 2.61 and the definition of the derivative !'(xo). But

lim dx = 0,
Ax"" a

and therefore

lim [j(xo + dx) - f(xo)] = 0,
Ax ...•a
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or equivalently

lim f(xo + L\x) = f(xo),
4x-+O
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since f(xo) is a constant. But this is just another way of writing the formula

lim f(x) = f(xo),
x-xo

expressing the continuity of f(x) at Xo(let x = Xo + L\x, L\x = x - xo).

PROBLEMS
1. Deduce from (4) that if f(x) --+ A as x --+ Xo, then cf(x) --+ cA as x --+ Xo,where

c is an arbitrary constant.
2. Show that if fl(X) --+ Ah f2(X) --+ A2, ... , fn(x) --+ An as x --+ xo, then fl(X) +

f2(X) + ... + fn(x) --+ Al + A2 + ... + An and fl(X)f2(X)'" fn(x) --+ AIA2'" An as
x --+ Xo'

3. What goes wrong in Example 2.62b if we try to evaluate the limit A directly
by using Theorem 2.61, without making the preliminary factorization?

4. Evaluate

(a) 1. X2 - 5x + 6
1m 2 ;

x"'2 X - 8x + 15

(c) 1. X3 - 3x + 2
1m 4 ;

x ..•o X - 4x + 3

. x2 - 2x - 3
(b) lIm 2 ;

x •.•o X + 2x + 1

(d) lim (1 + x)(1 + 2x)(1 + 3x) - 1.
x-I X

5. At what points does the function
x2 - 1

f(x) = x2 _ 3x + 2

fail to be continuous?
6. What choice of f(O) makes the function

f(x) = 5x
2

- 3x
2x

(x :;, 0)

continuous at x = O?
7. Find the one-sided limits at x = 2 of the function

f(x) = {x
2

- 1 if 1 ~ x < 2,
2x + 1 if 2 ~ x ~ 3.

8. Graph the function f(x) = [x], where [x] is the integral part of x (Sec. lA,
Prob. 10). At what points is f(x) discontinuous?

9. Verify that the function f(x) = [x] is continuous from the right at every point
of the real line.

10. Is the function
f(x) = {2X if 0 ~ x ~ 1,

2 - x if 1 < x ~ 2
continuous in the interval 0 ~ x ~ 2? In the interval 0 ~ x ~ I? In 0 < x < 2?

11. Show that the ordinary limit
lim f(x)
x-xo
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exists if both one-sided limits

lim f(x),
x-xo-

lim f(x)
X-Xo+

Chap. 2

exist and are equal, and conversely. Show that if the ordinary limit exists, then

lim f(x) = lim f(x) = lim f(x).
X-Xo x-Xo- X-Xo+

12. Show that f(x) is continuous at Xo if f(x) is continuous both from the left and
from the right at Xo, and conversely.

13. Do the considerations of Sec. 2.65c apply to open intervals?
*14. Show that if f(x) is continuous at Xo, then so is If(x)l.
*15. Prove formulas (4) and (5) with the help of Sec. 2.4, Problems 14 and 15.

2.7 DIFFERENTIATION TECHNIQUE

So far we have only calculated the derivatives of a few functions, resorting each
time to the definition of the derivative as a limit. This is, of course, very inefficient,
and what we really want are ways to evaluate derivatives simply and methodically,
without the need to always go back to first principles. To this end, we now prove
a number of easy theorems, each establishing an important differentiation rule. As
in Sec. 2.55a, we will avoid the use of subscripts to keep the notation as simple as
possible. For the same reason, we will often leave out arguments of functions,
writing f instead of f(x) , F instead of F(x), and so on.

2.71. a. THEOREM (Derivative of a sum or difference). If the functions f and 9
are both differentiable at x, then so is the sum F = f + 9 and the difference G = f - g.
The derivatives of F and G at x are given by

or equivalently by

F'(x) = f'(x) + g'(x),
G'(x) = f'(x) - g'(x),

dF(x) df(x) dg(x)-----+--dx-dx dx'

dG(x) df(x) dg(x)
--;h=~-~

(1)
(2)

in the "d notation."
Proof. By the definition of a derivative, we have

F'(x) = lim F(x +_l:1x~...)~-_~__F(__x_)_= limf ~~(_x_+ _l:1_x)_+_g(_x_+_l:1_x)_-_f_(x_)_-_g_(x_)
Ax-O l:1x Ax-+O l:1x

= lim [f(X + l:1x) - f(x) + g(x + l:1x) - g(X)].
Ax-+O l:1x l:1x

But "the limit of a sum is the sum of the limits" (Theorem 2.61), and therefore

F'() l' f(x + l:1x) - f(x) l' g(x + l:1x) - g(x) f'() '( )x = 1m A + 1m A = X + 9 x,
Ax-+O uX Ax-+O uX

which proves (1). The proof of (2) is virtually the same. 0
b. By an algebraic sum we mean a sum whose terms can have either sign.
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COROLLARY. If the functions fl'/2, ... , f" are all differentiable at x, then so is
the algebraic sum F = fl :!: f2 :!: ... :!: f". The derivative of F at x is given by

or equivalently by

F'(x) = f~ (x) :!: f2(X) :!: ... :!: f~(x), (3)

dF(x) = dfl (x) + dfix) + ... + df,,(x).
dx dx - dx - - dx

Proof. Here we can choose any combination of pluses and minuses in F =

fl :!: f2 :!: ... :!: f", just as long as we pick the same combination in (3). To prove
(3), we merely apply Theorem 2.71a repeatedly. For example, if F = fl + f2 - f3,
then F = g - f3, where g = fl + f2, and therefore

F'(x) = g'(x) - f3(X),

which together imply

g'(x) = f'l(X) + f2(X),

F'(x) = f~(x) + f2(X) - f3(X),

and similarly for other combinations. 0
In other words, to calculate the derivative of the algebraic sum of two or more

differentiable functions, we differentiate the sum "term by term." This fact can be
expressed even more simply by writing

(/1 :!: f2 :!: ... :!: f,,)' = f~ :!: f2 :!: ... :!: f~.

2.72. a. THEOREM (Derivative of a product). If the functions f and g are both
differentiable at x, then so is the product F = fg. The derivative of F at x is given by

or equivalently by

F'(x) = f'(x)g(x) + f(x)g'(x), (4)

dF(x) = df(x) () f() dg(x)
dx dx g x + x dx'

Proof. Again, by definition,

F'(x) = lim F(x + L\x) - F(x) = lim f(x + L\x)g(x + L\x) - f(x)g(x)
Ax~O L\x Ax~O L\x

= lim f(x + L\x)g(x + L\x) - f(x)g(x + L\x) + f(x)g(x + L\x) - f(x)g(x)
Ax~O L\x

I. f(x + L\x) - f(x) ( A) I' f() g(x + L\x) - g(x)= 1m ------g x + LlX + 1m x ------
Ax~O L\x Ax~O L\x

I. f(x + L\x) - f(x) I' ( A) I' f() I' g(x + L\x) - g(x)= 1m ------ 1m g x + LlX + 1m x 1m ------,
Ax~O L\x Ax~O Ax~O Ax~O L\x

where we repeatedly use Theorem 2.61. It follows that

F'(x) = f'(x) lim g(x + L\x) + f(x)g'(x), (5)
.6.x-O

where we use the definitions of the derivatives f'(x) and g'(x), as well as the fact that
f(x) is a constant in this calculation. But g is continuous at x, by Sec. 2.66, and
therefore

lim g(x + L\x) = g(x).
.6.x-+o

(6)
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Substituting (6) into (5), we get the desired formula (4). 0
b. COROLLARY. If the functions flo f2, ... , I.are all differentiable at x, then so

is the product F = fd2 ... f.. The derivative of F is given by

F'(x) = f~ (X)f2(X)' .. f.(x) + fl (x)f~(x) ... f.(x) + ... + fl (X)f2(X)' .. f~(x),

or equivalently by

dF(x) dfl(x) df2(x) df.(x)
~ = ~ f2(X)'" f.(x) + fl(X) ~ ... f.(x) + ... + fl(X)f2(X)"'~'

Proof. This time we apply Theorem 2.72a repeatedly. For example, if F =
fdd3, then F = gf3, where g = fd2' Therefore, by two applications of the
theorem,

F'(x) = g'(X)f3(X) + g(x)f~(x)
= [f'1(x)f2(X) + fl(X)f~(x)]f3(X) + fl(X)f2(X)f~(x)
= f~(x)fix)f3(X) + fl(X)f~(x)f3(X) + fl(X)fix)f~(x). 0

In other words, to calculate the derivative of the product of two or more
differentiable functions, we add the result of differentiating the first factor and
leaving the other factors alone to the result of differentiating the second factor and
leaving the others alone, and then if necessary we add this sum to the result of
differentiating the third factor and leaving the others alone, and so on until all the
factors have been differentiated.

2.73. THEOREM (Derivative of a quotient). If the functions f and g are both
differentiable at x, then so is the quotient F = fig, provided that g(x) # O. The de-
rivative of F at x is given by

F'( .) = f'(x)g(x) - f(x)g'(x)
X g2(X) ,

or equivalently by

(7)

dF(x)
~=

Proof. This time we have

df(x) g(x) _ f(x) dg(x)
dx dx

g2(X)

f(x + ilx) f(x)

F'(x) = lim F(x + ilx) - F(x) = lim g(x +ilx) g(x)
dX-O ilx dX-O ilx

= lim f(x + ilx)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x + ilx)
dX-O ilxg(x)g(x + ilx)

f(x + ~; - f(x) g(x) _ f(x) g(x + ~~ - g(x)

== lim -----------------
dX-O g(x)g(x + ilx)

lim f(x + ilx) - f(x) g(x) _ lim f(x) g(x + ilx) - g(x)
dX-O ilx dX-O ilx

lim g(x)g(x + ilx)
4X-+O

(8)
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(9)dx = 1
dx '

dc = 0
dx '

where Theorem 2.61 has been used twice. Taking the limits called for in (8) and
using formula (6) again, we get the desired formula (7), where, of course, g2(X) is
shorthand for [g(xW. 0

2.74. Examples

a. We have already shown in Examples 2.43a and 2.43b that

dx2
(h = 2x,

where c is an arbitrary constant. Of course, each of these formulas is an almost
effortless application of the definition of the derivative as a limit.

b. If c is an arbitrary constant, then

d df(x)
dx cf(x) = c~. (10)

SOLUTION. By Theorem 2.72a,

d dc df(x)
dx cf(x) = dx f(x) + c~.

But this immediately implies (10), since dc/dx = 0, by the first of the formulas (9).
c. Show that

d_ x. = nx.-1
dx

(n = 1,2, ... ), (11)

where XO = 1, by definition.
SOLUTION. Formula (11) holds for n = 1 and n = 2. In fact, for these values

it reduces to the last two of the formulas (9). Suppose (11) holds for n = k, so that

d_xk = kXk-1dx .

Then, by Theorem 2.72a,

d d dxk dx_Xk+1 = -(xk.x) = -x + xk_ = kXk-1.X + xk'l
dx dx dx dx

= kxk + xk = (k + l)xk.

Thus if formula (11) holds for n = k, it also holds for n = k + 1. But the formula
holds for n = 1 (or, for that matter, for n = 2), and therefore it holds for all
n = 1, 2, ... , by mathematical induction (Sec. 1.37).

d. Differentiate the polynomial

P(x) = ao + alx + a2x2 + ... + a.x •.

SOLUTION. Using the corollary to Theorem 2.71a, together with formulas
(10) and (11), we get

dP(x)
-- = a + 2a x + ... + na x.-1dx 1 2 •.

This is, of course, another polynomial, whose degree is one less than that of the
original polynomial P(x).
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e. Show that

n
- xn+ 1

SOLUTION. Using Theorem 2.73, we have

xn~I-I'~xn
dx dx

--=-------
dx xn x2n

(x =I- 0).

Chap. 2

(12)

with the help of (11). Suppose we set

-n 1x =-
xn

(n = 1,2, ... ), (13)

in accordance with the usual definition of negative powers. Then (12) can be written
in the form

d -n -n-1-x = -nx
dx (x =I- 0).

But, apart from the necessary stipulation that x =I- 0, this is just formula (11) with
- n instead of n. Thus we see that (11) remains valid for negative integers. Note
that (11) also holds for n = 0 (and x =I- 0), since it then reduces to the formula

d d
- XO = - 1 = O. x-1 = 0,
dx dx

which merely expresses the fact that the derivative of the constant 1 equals O.
We have just shown that formula (11) is valid for any integer n, positive, negative

or zero. Remarkably enough, it can be shown that (11) remains valid even whenn
is an arbitrary real number. This is worth writing down as a separate formula:

d-xr = rxr-1
dx

(r real). (14)

Here, of course, we assume that xr and xr-1 are both defined. If r is irrational, we
must require that x > 0, but ifr is rational, xr and xr-1 may well be defined for all x
or for all x =I- 0 (see Probs. 5-7). We will use formula (14) freely from now on, and
it should be committed to memory. The proof of (14), and of formulas (15) and (16)
below, as well as the reason for the requirement x > 0 if r is irrational, will be given
in Sec. 4.45, where we will decide just what is meant by xr in the first place! Formula
(14) is used in conjunction with the natura! extension of (13) to the case of an arbi-
trary real number r:

-r 1x =-
xr

(r real). (15)

f. Differentiate-IX.
SOLUTION. First we note that -IX = X1/2• To see this, we use the formula

(xr)' = xrs, (16)
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valid for arbitrary real numbers rand s. Choosing r = t, s = 2 in (16), we find that

(x1/2)2 = X,

which implies X1/2 = JX.
Applying formula (14), with r = t, we get

~ r:; _ ~ 1/2 _! -1/2 _ !_1_
dx V x - dx x - 2 x - 2 x1/2'

where in the last step we use (15). Thus, finally,

d 1
. dx JX = 2JX' (x > 0).

2.75. Higher derivatiyes

a. Let f(x) be differentiable in an interval I, with derivative f'(x), and suppose
f'(x) is itself differentiable in I. Then the function

df'(x) = (f'(x))'
dx

is called the second derivative of f(x), written f(2)(X) or f"(x). Similarly, if f"(x) is
differentiable in I, the function

df"(x) = (f"(x))'
dx

is called the third derivative of f(x), written f(3l(X) or f"'(x). More generally, by the
derivative of order n of f(x), or briefly the nth derivative of f(x), denoted by f(n)(x),
we mean the function

dl'(n-1)(X)
:J dx = (f(n-1)(x))',

assuming that the derivative pn-ll(x) of order n - 1 exists and is itself differentiable
in I. We also write

f(x) = f(O)(x),

that is, f(x) is the result of not differentiating f(x) at all!
b. In terms of the "d notation," f(n)(x) is written as

f(nl( ) = dnf(x) = ~ f( )
x dxn dxn x.

Note that in the numerator the exponent n is attached to the symbol d, while in the
denominator it is attached to the independent variable x. The expression dn/dxn

should be thought of as a single entity calling for n-fold differentiation of any func-
tion written after it. Similarly, dnf(x)/dxn should be regarded as just another way
of writing f(nl(x), without attempting to ascribe separate meaning to the different
symbols making up the expression. Higher derivatives of the dependent variable
are defined in the natural way. Thus, if y = f(x), we have

dy d2y dny
y' = dx = f'(x), y" = dx2 = f"(x), ... , y(n) = dxn'= pnl(x).
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c. Example. If y = x4, then

4 d~ d d~ d 2- = 4x3 - = -4x3 = 12x2 dx3 = dx 12x = 24x,dx ' dx2 dx '

d4y d d5y d
dx4 = dx 24x = 24, dx5 = dx 24 = O.

It is clear that in this case all derivatives of order n > 5 also equal zero. Note that
the fourth derivative of x4 equals 4 . 3 . 2 . 1 = 24. More generally,

dn dn-l dn-2
n n-l (l)n-2dxn x = dxn-l nx = dxn-2 n n - x

d .
= ... = dx n(n - 1)' .. 2x = n(n - 1)' .. 2. 1 = n!,

where we use the symbol n!, pronounced "n factorial," as shorthand for the product
of the first n positive integers.

PROBLEMS
1. Differentiate

(a) x4 + 3x2 - 6;

2. Differentiate

(b) 2ax3 - bx2 + c;
1

(c) x - ~;

(a) (x - a)(x - b); (b) x(x - a)(x - b);
(d) (2x - 1)(x2 - 6x + 3).

3. Differentiate

(a) x - a;
x+a

2x
(b) 1 _ x2'

x2 - 5x
(c) x3 + 3 ;

4. "The derivative of a rational function is also a rational function." True or
false?

5. Given any positive integer n, by the nth root of x, denoted by !fX or Xl/n (with
the conventions 1X = x, :ifX = .JX), we mean either the unique nonnegative
number whose nth power equals x if n is even, or the unique number (possibly
negative) whose nth power equals x if n is odd. Show that this definition is
in keeping with formula (16). Show that if n is odd, then :fX is defined for
all x and is an odd function, while if n is even, then .:fX is defined only for
x ~ O.

6. Given any positive integers m and n, where the fraction min is in lowest terms,
let

by definition. Show that this is in keeping with formula (16). Show that if n
is odd, then xnln is defined for all x and is an even function if m is even and
an odd function if m is odd, while if n is even, then xmln is defined only for
x ~ O.
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7. Let xmln be the same as in the preceding problem, and let

1x-min =_
xmln'

by definition. Show that this is in keeping with formula (15). Show that if n
is odd, then x - minis defined for all x</;O and is an even function if m is even
and an odd function if m is odd, while if n is even, then x-min is defined only
for x> O.

8. Differentiate

(a) ifX; (b) -ifX' (c) #; (d) ifX2.

9. "The nth derivative of a polynomial of degree n is a nonzero constant." True
or false?

10. Find the first n derivatives of the function y = 11x.
11. Given two functions f and 9 with third derivatives, evaluate (fg)"'.
12. Let y = x(2x - 1)2(X + 3)3. Find /6) and P) with as little work as possible.
*13. Show that the segment of any tangent to the curve y = l/x cut off by the coor-

dinate axes is bisected by the point of tangency.
*14. Why are the denominators in (8) all nonzero, as required?

2.8 FURTHER DIFFERENTIATION TECHNIQUE

2.81. a. The concept of an inverse function was introduced in Sec. 2.16. The
next rule shows how to express the derivative of an inverse function in terms of the
derivative of the original function.

THEOREM. Let f be a one-to-one function with inverse 9 = f -1. Suppose f is
differentiable at x, with derivative f'(x) </; 0, and suppose 9 is continuous at y = f(x).
Then 9 is differentiable at y, with derivative

g'(y) = f'~xr

Proof. If

(1)

then

so that, in particular,

y = f(x),

x = g(y),

y + ~y = f(x + ~x),

x + ~x = g(y + ~y),

~x = g(y + ~y) - g(y),

g(y + ~y) - g(y)
~y

~y = f(x + ~x) - f(x)

~x
f(x + ~x) - f(x)'

Since 9 is continuous at y, ~y -+ 0 implies ~x -+ O. But then

'() l' g(y + ~y) - g(y) l' ~x9 Y = 1m ------ = 1m -------
Ay .••O ~y A","'O f(x + ~x) - f(x)
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where the denominator f(x + ~x) - f(x) cannot vanish since f is one-to-one.
Therefore

4x-+O
g'(y) = lim

1
f(x + ~x) - f(x)

~x

b. In the "d notation," (1) becomes

lim
Ax-Q

1
f(x + ~x) - f(x)

~x

1
f'(x)'

o

dg(y) df-l(y)
trY = dy

More concisely, we have

dx 1
dy dY'

dx
or equivalently

1
df(x)
dx

dy dx = 1
dx dy ,

dy 1
dx ~'

dy

in terms of the variables y = f(x) and x = g(y). All three formulas resemble alge-
braic identities, but they do not, of course, constitute a proof of our theorem. They
do show, however, that the "d notation" is so apt that it tends to suggest true theorems!

c. In order to use Theorem 2.81a, we must somehow know that the inverse
function g = f-1 is continuous at x, so that ~y --+ 0 will imply ~x --+ O. In every
case of interest, this will follow from the following fact, a complete proof of which
is beyond the scope of this book (for the easy part of the proof, see Sec. 2.3, Probs. 15
and 16): Iff is continuous and one-to-one in a closed interval [a, b], then there are
only two possibilities:

(1) f is increasing in [a, b] and its inverse function f-1 is increasing and
continuous in the closed interval (f(a), f(b)];

(2) f is decreasing in [a, b] and its inverse function f - 1 is decreasing and
continuous in the closed interval (f(b), f(a)J.

The meaning of this assertion is illustrated by Figure 12A for the case of increasing
f (and f -1) and by Figure 12B for the case of decreasing f (and f -1). .

d. Example. The function

y = f(x) = x2

is one-to-one and continuous in every closed interval a ::::;x ::::;b, where a ~ 0, by
Examples 2.16c and 2.64b, and we already know that f(x) is increasing in a ::::;x ::::;b,.
since 0 ::::;Xl < X2 implies xi < x~ (why?). It follows from the italicized assertion
that the inverse function

x = f-l(y) = JY
is increasing and continuous in the interval a2 ::::;y ::::;b2• In particular, f-1is
continuous at every point y ~ 0, since every such point belongs to an interval of
the type a2 ::::;y ::::;b2, where a ~ O.
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x

Having proved the continuity of x = JY, we can now use Theorem 2.81a to
differentiate JY, without recourse to formula (14), p. 78. In fact,

dJY dx 1 1,1
dy y = dy = dY = 2x = 2JY'

dx
which is the same as the result of Example 2.74f, except that the roles of x and y
have been reversed (why is this?).

2.82. a. The concept of a composite function was introduced in Sec. 2.22. The
next rule, one of the most important in calculus, shows how to express the derivative
of a composite function in terms of the derivatives of its "constituent functions."

THEOREM. Let f and g be two functions such that f is differentiable at x and g is
differentiable at f(x). Then the composite function F, defined by F(x) == g(f(x», is
differentiable at x, with derivative

F'(x) = g'(f(x) )f'(x). (2)

Proof. Let y = f(x) and z = g(y) = F(x). Since f is differentiable at x and g
is differentiable at y = f(x), both limits

f'(x) = lim f(x + Ax) - f(x),
Ax-O 6.x

g'(y) = lim g(y + 6.y) - g(y)
Ay-O 6.y

exist. But then

lim [f(X + 6.x) - f(x) - f'(X)] = 0,
Ax-O 6.x

lim [g(y + 6.y) - g(y) - g'(Y)] = 0,
Ay-O 6.y

or equivalently

lim a(6.x) = 0,
Ax-O

lim fJ(6.y) = 0,
Ay-O
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(3)
ex(Llx) = f(x + ~; - f(x) - f'(x),

f3(Lly) = g(y + LlY) - g(y) _ g'(y)
Lly

(recall Sec. 2.55a). Using (3) to write the increments of y and z in terms of the incre-
ments of x and y, we get

Lly = f(x + Llx) - f(x) = [f'(x) + ex(Llx)] Llx,
Llz = g(y + Lly) - g(y) = [g'(y) + f3(Lly)] Lly.

The trick now is to substitute the expression for Lly into the formula for Llz.
This gives

Llz = [g'(y) + f3(.Lly)] [f'(x) + ex(Llx)] .Llx, (4)

(5)

which is beginning to look a little like (2). It follows from the expression for .Lly
(or from the continuity off at x) that Ax~ 0 implies l1y ~ 0, so that Ax~ 0 implies
both a(Ax) ~ 0 and f3(l1y) ~ O.Therefore, dividing (4) by Ax and taking the limit as
Ax ~ 0, we find that

lim ~z = lim [g'(y) + f3(Lly)] lim [f'(x) + ex(.Llx)]
ax"'O uX ax'" 0 ax'" 0

= g'(y)f'(x) = g'(f(x) )f'(x).

At the same time,

.Llz = g(y + .Lly) - g(y) = g(f(x) + f(x + .Llx) - f(x» - g(f(x»
= g(f(x + .Llx» - g(f(x» = F(x + .Llx) - F(x),

which implies

lim .Llz = lim F(x + .Llx) - F(x) = F'(x).
ax ..•O .Llx ax'" 0 .Llx

(6)

Comparing (5) and (6), we immediately get (2). 0
b. Thus, to differentiate the composite function g(f(x», we multiply the result

of differentiating 9 with respect to its argument f(x) by the result of differentiating f
with respect to its argument x. Roughly speaking, we "peel off" the layers of paren-
theses one by one, differentiating each function encountered on the way. This
procedure applies equally well to more than two functions. For example, if F(x) ==
h(g(f(x»), then

d
F'(x) = h'(g(f(x») dx g(f(x» = h'(g(f(x» )g'(f(x) )f'(x) (7)

if f, 9 and h are differentiable at x, f(x) and g(f(x», respectively.
Theorem 2.82a is called the chain rule, a term suggesting the process of differen-

tiation just described. The term is even more suggestive in the case of functions of
several variables (see Sec. 6.3).

c. In the "d notation," (2) becomes

dz dz dy
dx dy dx'
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in terms ofthe variables y = f(x), z = g(y). Similarly, introducing variables y = f(x),
z = g(y), u = h(z), we can write (7) in the form

du du dz dy
dx = dz dy dx'

Do not make the mistake of regarding these formulas as trivial algebraic calculations,
involving nothing more than cancelling dy and dz from the numerators and de-
nominators. We have not done away with the need for proving the chain rule, but
have merely written it in a very suggestive way, which, in particular, makes it very
easy to remember.

d. In connection with composite functions, it should be noted that "a con-
tinuous function of a continuous function is continuous." More exactly, iff and 9
are two functions such that f is continuous at xo and 9 is continuous at f(xo), then the
composite function F, defined by F(x) == g(f(x)), is continuous at xo. This is easily
shown with the help of "e, 0 language." Since 9 is continuous at f(xo), given any
e > 0, we can find a number 01 > 0 such that

IF(x) - F(xo)1 = Ig(f(x)) - g(f(xo))1 < e (8)

whenever If(x) - f(xo) I < 01, (Note that there is now no need to require that
f(x) "# f(xo) or x "# xo, since g(f(xo)) and f(xo) are defined.) But since f is con-
tinuous at Xo, we can also find a number 0 > 0 such that If(x) - f(xo)1 < 01
whenever Ix - xol < O. Therefore (8) holds whenever Ix - xol < 0, that is, F(x) --+ F(xo)
as x --+ Xo' In other words, F is continuous at Xo, as asserted.

Thus, to prove the continuity of the function

F(x) = Jl+X'i,
we use the continuity of g(x) = JX, established in Example 2.81d, and the continuity
of f(x) = 1 + xZ, established in Example 2.64b, together with the observation that
F(x) == g(f(x)). In fact, F(x) is continuous in the whole interval (- 00, 00), since
1 + xZ ~ 1 for all x, while JX is continuous for all x ~ O.

2.83. Examples

a. Differentiate

SOLUTION.
fore

(
1 )100

F(x) = 1 + XZ

Here F(x) == g(f(x)), where g(x) = x100, f(x) = 1 + x-z.

(9)

There-

g'(x) = l00x99,

by Examples 2.74c and 2.74e, or, if you prefer, by formula (14), p. 78. The chain
rule then gives

_200 (1 + _1)99F'(x) = g'(f(x) )f'(x) = 100(1 + X-Z)99( - 2x- 3) =
x3 XZ

It would be the height of folly to actually calculate the right side of (9) explicitly and
then differentiate!
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b. Differentiate Jx + .JX.
SOLUTION. By the chain rule,

d --- 1 d
-d .Jx +.JX = --d (x + JX)
x 2Jx +.JX x

= 1 (1 + _1_) = 2JX + 1
2Jx + .JX 2ft. 4JXJx + .Jx:

where we use Example 2.74ftwice.
c. Given a function y = f(x), find the derivative of yO.
SOLUTION. By the chain rule,

dy" dy" dy "-1 dy
-=--=ny -
dx dy dx dx'

or, more concisely,

(y"Y = ny"-ly'.
d. If

(10)

(11)

find y'.
SOLUTION. Rather than solve (11) for y as a function of x and then differen-

tiate y, we differentiate (11) with respect to x and then solve for y'. Thus

d 2 3 d
dx (x - xy + y ) = dx 1 = °

or
2x - y - xy' + 3y2y' = 0,

with the help of (10). Solving for y', we find that

, 2x - Y
y=X-3y2'

(12)

Since we make no attempt to express y explicitly as a function of x, this process is
called implicit differentiation. In the present case, direct calculation of y from the
cubic equation (11), followed by differentiation of the resulting expression for y, would
lead at once to a mass of tedious and completely unnecessary calculations.

2.84. Two remarks must be made in connection with implicit differentiation:
a. The method cannot be used blindly, since it gives a formal answer for y' even

in cases where y (and hence y') fails to exist! For example, the solution set (Sec. 2.31a)
of the equation

x2 + y2 = a

is empty if a < 0, and yet implicit differentiation of this equation gives
2x + 2yy' = 0,

and hence

regardless of the sign of a.

y' = x
y'
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b. Extra work is required to evaluate the derivative y' at a particular point
x = xo' For example, to evaluate (12) at x = 1, we need the value of y at x = 1.
Substituting x = 1 into (11), we get

1 - Y + y3 = 1

or

y3 = y,

which has three solutions y = 0 and y = ::!: 1. The corresponding values of y' are

2.1 - 0
y'IX=1,y=O = 1 _ 3. 0 = 2,

2. 1 - 1
y'IX=1,Y=1 = 1 - 3.1 = -2'

, 2'1+1 3
y Ix= 1,y= -1 = 1 _ 3 . 1 = -2'

Here, of course, y'lx=xo,y=yO stands for the value of y' corresponding to x = xo,
y = Yo' We will often find this kind of "single vertical bar notation" useful.

PROBLEMS

1. Use Theorem 2.81a to differentiate,;jX. Why is this function continuous every-
where? Check the result by using formula (14), p. 78.

2. Which is larger, J3 + 15 or J2 + -/6? Justify your answer.
3. Differentiate

(a) (x + 1)(x + 2)2(X + W; (b) (x + 4)2; () (2 - x)(3 - x)
x + 3 c (1 - X)2

4. Let y = (2x + Woo. Find y'lx=o with as little work as possible.
5. Show that "differentiation changes parity," which means that the derivative of

an even function is odd, while the derivative of an odd function is even.
6. Use the chain rule and the rule for differentiating a product to deduce the rule

for differentiating a quotient.
7. Differentiate

(b) )1 + x;
1 - x

8. Differentiate

(1 - x)'
(1 + x)S'

where rand s are arbitrary real numbers.
9. Verify that

d 1

dx~(x+~)
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10. Verify that

dn 1 [( _1)n 1 ]
dxn x(1 - x) = n! xn+l + (1 _ X)"+l .

n. Where is the function -J x + JX continuous? How about the function 1x - ifX?
12. If

find y'. Evaluate y'IX~I'
13. If

x2 + xy + l = 1,

x2 _ xy + y2 = 1,

(13)

(14)

(15)

find y'. Evaluate y'lx~I'
14. Use implicit differentiation to find y" if xmyn = 1, where m and n are nonzero

integers.
15. We have already assumed the validity of the formula

d_ x' = rx.-l
dx '

where r is an arbitrary real number (this will be proved in Sec. 4.45). Use the
chain rule to verify (15) for the case where r is an arbitrary rational number
min, starting from the fact that y = xmln is equivalent to y = tm, where t = X

l/n.
16. Use implicit differentiation to verify (15) for rational r, this time starting from

the fact that y = xmln is equivalent to yn = xm.
*17. If x2 + y2 = 25, find the values of y', y" and y'" at the point (3,4).
*18. Solve Problem 13 by first finding an explicit formula for y as a function of x.
*19. "If

(16)

find y'." Why is this an impossible assignment?
* 20. Heeding the warning in Sec. 2.84a, verify the existence of the derivatives in

Sec. 2.84b and Problem 12.

2.9 OTHER KINDS OF LIMITS

2.91. Limits involving infinity

a. The graph of the function

1
y = f(x) =-

x
(x #- 0) (1)

is shown in Figure 13A. Examining this graph, we see that f(x) has a number of
interesting "limiting properties" of a kind not yet encountered:

(a) As x takes "smaller and smaller" positive values, y takes "larger and
larger" positive values;

(b) As x takes "smaller and smaller" negative values, y takes "larger and
larger" negative values;

(c) As x takes "larger and larger" positive values, y takes "smaller and
smaller" positive values;
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(d) As x takes "larger and larger" negative values, y takes "smaller and
smaller" negative values.

By a "small" or "large" negative number, we mean, of course, a negative number of
"small" or "large" absolute value.

These properties of f(x) all express a kind of limiting behavior in which "large-
ness" plays a role, as well as "smallness." How do we modify the language of limits
to cover situations of this type? Very s;.mply. Ifa variable, say x, takes "larger and
larger" positive values, we say that "x approaches (plus) infinity" and write x ~ 00,

while if x takes "larger and larger" negative values, we say that "x approaches minus
infinity" and write x ~ - 00. This is in keeping with the use of the symbols 00 and
- 00 in writing infinite intervals (Sec. 1.64). Once again, we emphasize that 00 and
- 00 are not numbers, so that we can never have x = 00 or x = - 00.

We can now express the four listed properties of the function (1) much more
concisely:

(a) Asx~O+,y~oo,or

lim f(x) = 00;
x-o+

(b) Asx -+ O-,y ~ -00, or

lim f(x) = - 00;
x-o-

(c) As J!: ~ 00, y ~ 0 (more exactly, y ~ 0+), or

lim f(x) = 0;

(d) As x -+ - 00, y -+ 0 (more exactly, y -+ 0-), or

lim f(x) = O.
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In (a) and (b) we have "infinite limits," and in (c) and (d) we have "limits at infinity,"
as opposed to the "finite limits"

lim f(x) = A,
X-Xa

lim f(x) = A,
X"'XQ+

lim f(x) = A,
x-xo-

considered previously, where A and Xo are both numbers, rather than one of the
symbols 00, - 00, a fact often emphasized by calling A and Xo "finite." There are
also ordinary, "two-sided" infinite limits. For example, it is clear from Figure 13B
that

I" 1
1m -I 1= 00 ..

x-+o X
We can also have infinite limits at infinity. For example, x2 takes "arbitrarily large"
positive values when x takes "arbitrarily large" values of either sign (see Figure 5,
p. 49), and therefore

lim x2 = 00.
x- - 00

Similarly,

lim x3 = -00
x ..• -00

(see Figure 6, p. 50).
We will sometimes say that a variable "becomes infinite." This simply means

that it approaches either (plus) infinity or minus infinity. A function f(x) is said to
become infinite at a point Xo if y = f(x) becomes infinite as x approaches Xo.

b. All this can be made mathematically exact by using a version of the "e, f>
language" in which letters other than e and f> are used for numbers that are typically
large, since e and f> have a built-in connotation of smallness. For example, f(x) -+ 00

as x -+ Xo means that, given any M > 0, no matter how large, we can find a number
f> > 0 such that f(x) > M whenever 0 < Ix - xol < f>, f(x) -+ 00 as x -+ 00 means
that, given any M > 0, we can find a suitably large number L > 0 such that f(x) > M
whenever x > L, f(x) -+ A as x -+ - 00 means that, given any number e > 0, we can
find a number L > 0 such that If(x) - AI < e whenever x < -L, and so on.

c. Every problem involving infinite limits or limits at infinity can be reduced
to an analogous problem involving a finite limit at a finite point. To see this, we
observe that if

or equivalently

1
x = t'

1
t =-,x

(2)

then x -+ 00 is equivalent to t -+ 0+, while x -+ - 00 is equivalent to t -+ 0 -. In
fact, if x takes "larger and larger" positive values, then its reciprocal t takes "smaller
and smaller" positive values, and conversely, while if x takes "larger and larger"
negative values, t takes "smaller and smaller" negative values, and conversely. It



Sec. 2.9 Other Kinds of Limits 91

follows that f(x) -+ A as x -+ IX) is equivalent to f(l/t) -+ A as t -+ 0+, while f(x) -+ A
as x -+ - IX) is equivalent to f(l/t) -+ A as t -+ 0 -. By virtually the same argument,
f(x) -+ IX) as x -> Xo is equivalent to l/f(x) -+ 0+ as x -+ Xo, while f(x) -+ - IX) as
x -+ Xo is equivalent to 1/f(x) -+ 0- as x -+ Xo.

2.92. Examples

a. If

x2 + 2
f(x) = x2 + l'

find

lim f(x), lim f(x).

SOLUTION. We make the substitution (2) and investigate the behavior of the
resulting function of t as t -+ O:t. Thus

(~r+ 2
lim f(x) = lim f (~) = lim _(t_)_2-
x-+oo 1-+0+ t 1-+0+ 1- + 1

t

and similarly

lim _1_+_2t_2 = 1
1-+0+ 1 + t2 '

lim f(x) = lim f (~) = lim 1 + 2~2 = 1.
x-+-oo 1-+0- t 1-+0- 1 + t

This behavior as x -+ :t oc> is apparent from the graph of f(x), shown in Figure 14.
b. If

1
f(x) = -2--1'x -

find

lim f(x),
x-l+

y

lim f(x).
x-l-

o

Figure 14.

x
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SOLUTION. Noting that f(x) is undefined at x = 1, we go over to the function

1
g(x) = f(x) = x2 - 1,

which is perfectly well-behaved at x = 1. Clearly x2 - 1 -> 0 as x -> 1+, and more-
over x2 - 1 > 0 if x > 1 (why?). Therefore g(x) = x2 - 1 -> 0+ as x -> 1+. It
follows from the last sentence of Sec. 2.91c that

lim f(x) = 00.
x-l+

In virtually the same way, we see that g(x) -> 0- as x -> 1-, and hence

lim f(x) = - 00.
x-l-

This behavior as x -> 11: is apparent from the graph of f(x), shown in Figure 15.
From the graph we also deduce at a glance that

lim f(x) = lim f(x) = 0, lim f(x) = - 00, lim f(x) = 00.
x-co x-+-oo x-(-l)+ x-(-l)-

As this example illustrates, and .as is quite generally true, a rational function
approaches infinity at precisely those points where its denominator equals zero,
provided, of course, that all common factors of the numerator and denominator have
been cancelled out.

2.93. Asymptotes

a. Suppose a function f(x) becomes infinite at certain points, or is defined in
an infinite interval, so that the argument x becomes infinite. The graph of f(x) then
consists of one or more parts, called "infinite branches," which "extend out to infinity"
in one direction or another. For example, the function graphed in Figure 15 has
three such branches, namely the part of the graph to the left of the line x = -1, the

V
I
I
I
I
I
I
1
I
1
I
1
I

0 11
x

-11
I 1
I II I
I -1

1
1 1
1 II 1I
I 1
I I
I 1

Figure 15.
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part of the graph between the lines x = -1 and x = 1,and the part of the graph
to the right of the line x = 1.

Now suppose an infinite branch of I(x) approaches a straight line L (without
touching it) as x approaches infinity in one -or both directions, or as x approaches
certain "exceptional points" from one or both sides. Then L is called an asymptote of
I(x), and the function I(x), or its graph, is said to approach L asymptotically.

b. Horizontal asymptotes. If the horizontal line y = Yo is an asymptote of I(x),
then the distance between the point (x, I(x)) and the line y = Yo approaches 0 as
x ....•00 or as x ....• - 00. But this distance is just I/(x) - yol, and therefore at least
one and possibly both of the formulas

lim I(x) = Yo, lim I(x) = Yo
x- - 00

must hold. Thus, to find the horizontal asymptotes (if an~) of I(x), we need only
examine the limiting behavior of I(x) as x ....•:t 00. For example, the line y = 1 is
a horizontal asymptote of the function I(x) graphed in Figure 14, while the function

x
y = 1 + lxi'

whose graph is the "S-shaped" curve shown in Figure 16, has two horizontal asymp-
totes, namely the lines y = :t 1. (How can this also be seen without drawing a graph?)
It is clear that a function can have no more than two horizontal asymptotes.

c. Vertical asymptotes. If the vertical line x = Xo is an asymptote of I(x),
then the distance between the points (x, I(x)) and the line x = Xo approaches 0 as
x ....•Xo + or as x ....•Xo -. This is automatically true for any function I(x), but
in the case of an asymptote, I(x) must at the same time become infinite, since an
asymptote is defined only for an infinite branch. Therefore, excluding the case (of
no practical interest) where I(x) does not stay of fi~ed sign as I(x) approaches its
asymptote, we see that at least one and possibly two of the formulas

lim I(x) = 00,
x-xo+

lim I(x) = - 00,
X-Xo+

lim I(x) = 00,
x-xo-

lim I(x) = - 00
x-xo-

must hold. Thus, in looking for the vertical asymptotes of I(x), we can confine our
attention to the points (if any) at which I(x) becomes infinite. Note that I(x) is
necessarily undefined at any such point. For example, the lines x = 1and x = -1
are vertical asymptotes of the function I(x) graphed in Figure 15.
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An example of a function with an asymptote which is neither horizontal nor
vertical is given in Problem 20.

2.94. The limit of a sequence

a. We say that a sequence {xn} approaches (or has) a limit A as n approaches
infinity if the general term Xn gets "closer and closer" to A as n gets "larger and larger."
This fact is expressed by writing

(3)

or Xn -+ A as n -+ 00. Put somewhat differently, (3)means that IXn - AI is "arbitrarily
small" for all "sufficiently large" n. Better still, in the natural analogue of the "e,o
language," (3)means that, given any e > 0, no matter how small, we can find an integer
no such that IXn - AI < e whenever n ;;,:no, that is, for all n starting from no. Clearly,
this also means that every e-neighborhood of A, namely every open interval of the
form (A - e, A + e), contains all the terms of the sequence Xn starting from some
value of n, where this value, of course, depends on the choice of e. Choosing e = 1,
we find that all the terms of the sequence Xn starting from some value of n fall in the
interval (A - 1,A + 1). This fact will be used in a moment.

b. A sequence is said to be convergent if it has a finite limit as n -+ 00 and
divergent otherwise. If a sequence is convergent, with limit A, we also say that the
sequence converges to A. A sequence Xn is said to be bounded if there is some number
M > 0 such that Ixnl < M for all n = 1, 2, ... and unbounded if no such number
exists. (For emphasis, we sometimes write '"for all n = 1, 2, ... " instead of the equiva-
lent phrase "for all n.") For example, the sequence Xn = lin is bounded, since
o < xn :::; 1 for all n, while the sequence Xn = n is unbounded, since there is clearly
no number M > 0 such that Ixnl = n < M for all n.

c. A convergent sequence is necessarily bounded. In fact, if {xn} is a convergent
sequence, with limit A, then there is an integer no such that all the terms xna' xna+ I>

Xna+ 2, ... , that is, all the terms Xn starting from no, lie in the interval (A - 1,A + 1).
By choosing M > 0 large enough we can see to it that the interval ( - M, M), with
its midpoint at the origin, contains the interval (A - 1,A + 1),together with the re-
maining terms XI> X2" .• , xna-I> some or all of which may not lie in(A - 1,A + 1).
But then Ixnl < M for all n = 1, 2, ... , so that the sequence is indeed bounded,
as claimed.

Since a convergent sequence is necessarily bounded, an unbounded sequence is
necessarily divergent.

d. A sequence Xn is said to be increasing if Xn < Xn + 1 for all n and decreasing
if Xn > Xn+ 1 for all n. By a monotonic sequence we mean either an increasing sequence
or a decreasing sequence. An important tool in the study of sequences is the following
key proposition, whose prooflies beyond the scope ofthis book: A bounded monotonic
sequence is necessarily convergent.

e. Algebraic operations on convergent sequences obey the same rules as alge- i
braic operations on limits of functions (why?). For example, if Xn -+ A and Yn -+ B
as n -+ 00, then Xn + Yn -+ A + Band XnYn -+ AB as n -+ 00.

2.9? Examples

a. The sequence

1
X =-
n n
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is convergent, with limit O. In fact, given any e > 0, let no be any integer greater than
l/e. Then IXn - 01 = Ixnl = l/n < e for all n ~ no, since l/n :::;l/no < e for such n
(use Theorem 1.46 twice). Note that this sequence is bounded and decreasing, so
that its convergence follows from the proposition in Sec. 2.94d. However, the pro-
position does not tell us how to find the limit.

b. The sequence

Xn = n! = n(n - 1)' .. 2. 1

is unbounded and hence divergent. In fact, to make Ixnllarger than any given positive
number M, we need only choose n > M, since then Ixnl = n! > n > M.

c. A bounded sequence need not be convergent. For example; the sequence

(4)
which 100Jcslike

-1, 1, -1, 1, -1, 1,... ,

is obviously bounded, since Ixnl = 1 for all n. On the other hand, the sequence is
divergent. To see this, take any proposed limit A, and make e so small that the
interval I = (A - e, A + e) fails to contain at least one of the points 1 and -1.
Clearly this can always be done, even if A = 1 or A = -1. Then all the terms of
(4) with even n lie outside I if I fails to contain the point x = 1, while all the terms
of (4) with odd n lie outside I if I fails to contain the point x = -1. Thus, in any
event, the sequence (4) cannot be convergent.

d. The sequence

(5)

is convergent for -1 < a < 1. To see this, suppose first that 0 < a < 1. Then the
sequence is decreasing, since

for all n. Moreover, the sequence is bounded, since

for all n. It follows from the proposition in Sec. 2.94d that the sequence is convergent.
Let the limit of the sequence as n -+ 00 be A. To find A, we note that

A = lim Xn+! = lim aXn = a lim Xn = aA.
n-+ 00 n-+ 00 n- 00

But since a of: 1, this is possible only if A = O. Therefore

liman=O
n-+ 00

(0 < a < 1). (6)

Next, if -1 < a < 0, we have 0 < lal < 1, and therefore lain approaches 0 as
n -+ 00, by formula (6) with lal instead of a. But then, since I~I= lain, it follows
that an also approaches 0 as n -+ 00 (explain further), that is

(-1 < a < 0).
n-+oo
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Combining this with (6) and the obvious fact that the sequence an converges to 0 if
a = 0, since all its terms then equal 0, we get

lim an = 0 (-1 < a < 1). (7)

Finally, we note that the sequence an converges to 1 if a = 1, since all its terms then
equal 1.

e. The sequence (5) is divergent for a = -1 and lal > 1. For a = -1 the
sequence reduces to the sequence (4), which has already been shown to be divergent.
If lal > 1, we first write

lal = 1 + <Ial - 1).

Then

lain = [1 + <Ial - 1)]n ?: 1 + n<lal - 1)> n(lal - 1),

with the help of the inequality

(1 + x)n ?: 1 + nx (x > -1),

proved in Problem 16. Since lal - 1 is positive, the product n<lal - 1) is greater
than any given number M > 0 for all n greater than

M
lal - l'

It follows that the sequence (5) is unbounded and hence divergent if la\ > 1, as
claimed.

2.96. The sum of an infinite series

a. Summation notation. First we introduce a concise way of writing sums,
involving the symbol L (capital Greek sigma). Let p and q be nonnegative integers
such that p ~ q, and let fen) be a function defined for all integers n from p to q.
Then

is shorthand for the sum

q

L fen)
n;;:::.p

f(p) + f(p + 1) + ... + f(q).

(8)

The symbol 11 is a "dummy index" (of summation), in the sense that it can be re-
placed by any other symbol without changing the meaning of (8). For example,

333

L 2n = L 2k = L 2a = 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15.
n=O k=O a=O

If p = q, the sum (8) reduces to the single term f(p).
b. Given a sequence {xn}, the expression

00

"x =x +x + ... +x + ...l..J n 1 2 n'
n=1

(9)

involving the terms of the sequence, is called an infinite series, or simply a series,
with terms Xl> X2, •.. , Xn, •. , The symbol 00 on top of the summation sign L means
that the sum on the right "goes on forever." This is also expressed by the second
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(10)

of partial sums of the terms of the series (9) is convergent, with limit s. Then we say
that the series (9) is convergent, with sum s. By the same token, if the sequence of
partial sums (10) is divergent, we call the series (9) divergent and assign it no sum
at all.

c. Example. Investigate the convergence of the geometric series
coL: an = 1 + a + a2 + ... + an + ....

n~O
(11)

SOLUTION. In other words, we are asked to find the values of a for which
the series (11) is convergent and the values for which it is divergent. Here the sum
of the first n terms of the series is just

sn = 1 + a + ... + an-I.

Multiplying Sn by a, we get

aSn = a + a2 + ... + an.

Subtracting aSn from (12), we find that all but two terms cancel out, leaving

Sn - aSn = (1 - a)sn = 1 - an.

Therefore
1 - an

sn=~,

(12)

(13)

provided that a # 1. It follows from Examples 2.95d and 2.95e that Sn is convergent
with limit

I. 1 - an 1 I. ( n) 1 ) 11m -- =-- 1m 1 - a = -- (1 - 0 =--
n-co 1 - a 1 - an-co 1 - a 1 - a

if -1 < a < 1 and divergent if a = -lor if lal > 1. If a = 1, formula (13) breaks
down (why?), but in this case the series (11) reduces to simply

1+1+ ... +1+ ... , (14)

so that Sn = n. Being unbounded, the sequence Sn is divergent, and hence so is the
series (14).

Thus, to summarize, the geometric series (11) is convergent, with sum
co 1L: an =--

n~O 1 - a

if -1 < a < 1 and divergent otherwise. For example,

while



98 Differential Calculus

PROBLEMS

Chap. 2

1. Evaluate

() I, JX2+1a 1m '
x-co X + 1 '

2. Evaluate

(b) lim JX2+1,
x--co x + 1 '

(c) lim 2X
2

2
- 5x + I,

x-:!:co 5x + x-I

(a)

3. If

x+3
lim -2--9;
x-3- x -

(b) I
, X2 + 9.
1m-2--'

x-3+ X - 9
() 1

. 1
c Im-,

x-O+ JX

1
f(x) = x(x - l)(x - 2)'

find all the one-sided limits of f(x) at 0, 1 and 2.
4. Verify that

I
, (x - l)(x - 2)(x - 3)(x - 4)(x - 5) _ 1
1m 5 - 5'

x-co (5x - 1) 5

5. Evaluate

, (2x - 3)20(3x + 2)30
lIm 50

x--co (2x + 1)

6. If

x-I
f(x) = x + 2'

verify that f(x) -+ 1 as x -+ 00, Find all positive x such that If(x) - 11< 0.001.
7. If

x-2
f(x)=~,

verify that f(x) -+ t as x -+ - 00, Find all negative x such that If(x) - tl < 0.001.
8. If

x
f(x) = --3'x-

verify that f(x) -+ 00 as x -+ 3+ and f(x) -+ - 00 as x -+ 3 -. Find all x such
that f(x) > 1000 and all x such that f(x) < -1000.

9. Find all asymptotes of the function

x-4
(a) y = 2x + 4; (b) =ax+b,

y ex + d'
x2

(c) Y = x2 _ 4'

10. Given any positive integer n, find a function f(x) with n vertical asymptotes.
11. Give an example of a function approaching a horizontal asymptote from one

direction only.
12. Give an example of a function approaching a vertical asymptote from one

side only.
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13. Find the limit of the sequence

2 8 3n - 1
(a) 0, 3' 9' ... ,-3-n-, ••• ,

Other Kinds of Limits

1 1 + (-I)n
(b) 0, 1,0, 2' ... , n ' ... ,

99

3 2 n 1
(c) 0.2,0.22,0.222, ... ,O.~, ... ; (d) 0'2' -3"" ,(-I) +;;, ...

II times

14. Which of the following sequences are convergent?
(a) Xn = (-I)nn; (b) Xn = n(-1)"; (c) Xn = n - (_I)n;

{

I for even n,
(d) x= 1

n _ for odd n.
n

15. Starting from what value of n are the terms of the sequence (-!)" within 10-6
of its limit?

16. Use mathematical induction to verify that
(1+ x)n ~ 1+ nx

for all n = 1,2, ... if x > -1.
17. Evaluate

an
lim--
n ...•<Xl 1 + an (a# -1).

18. Write the following expressions out in full, and then calculate their numerical
values:

(a)
5 1L -;

n=1 n
(b)

6
~ nl•L. .,
n=1

(c)
5

L
n=2

n-1n .

19. Find the sum of the series

(b) f (_1 _ 1 ) .
n=1 In F+T'

<Xl 1
(c) L --.

n=1 n(n + 1)

20. Verify that the function

x3
f(x) = 2x2 + 1

has neither horizontal nor vertical asymptotes. Convince yourself that f(x) has
the line y = x/2 as an asymptote.

*21. Give an example of a convergent sequence of rational numbers with an irra-
tional limit.

*22. Verify that the harmonic series
1 1 1

1+-+-+'"+-+'''2 3 n

is divergent.
*23. Show that if the series (9) is convergent, then Xn --+ 0 as n --+ 00. Is the con-

verse true?



Chapter 3

DIFFERENTIATION
AS A TOOL

3.1 VELOCITY AND ACCELERATION

3.11. By a particle we mean an object whose actual size can be ignored in a
given problem, and which can therefore be idealized as a point. There are problems
in which the earth itself can be regarded as a particle, just as there are problems in
which a pinhead is a complicated structure made up of vast numbers of tiny particles.

Consider the motion of a particle along a straight line. Let s be the particle's
distance at time t from some fixed reference point, where s is positive if measured in
a given direction along the line and negative if measured in the opposite direction.
Then the particle's motion is described by some distance function

s = s(t). (1)

Here, for simplicity, we denote the dependent variable and the function by the same
letter, a common practice. In the language of physics, (1) is the equation of motion
of the particle.

We now ask a key question: How fast is the particle going? There are two
answers, depending on whether we ask about a given interval of time or about a
given instant of time. In the first case, we get the average velocity, which is a difference
quotient. In the second case, we get the instantaneous velocity, which is a derivative.

3.12. Average velocity

a. By the average velocity of the particle with equation of motion (1), over the
interval from t to t + At, we mean the function of two variables

(A) _ s(t + At) - s(t)
Vav t, tJ.t - !J.t .

It is meaningless to ask for the average velocity at a given instant t without specifying
the averaging time.

b. To be useful, an average velocity should not be too "crude," that is, !J.t
should not be too large. Consider, for example, a particle whose equation of motion
is described (in part) by the table

t (in seconds) 0 1 2 3 4

s (in feet) 10 0 12 2 14

100
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The particle is actually moving back and forth rather dramatically, but you would
never know it calculating the "two-second averages"

12 - 10
v.v(0,2) = 2 = 1,

14 - 12
v.i2, 2) = 2 = 1,

which seems to suggest that the particle is moving slowly and steadily in the positive
direction with a velocity of 1 foot per second! Choosing a shorter averaging time
I1t = 1, we get

v.iO,l) = -10, v.i1, 1) = 12, v.v(2, 1) = -10, v.v(3, 1) = 12.

This gives a better picture of the particle's motion. At least, it shows that the direc-
tion of the particle's motion changes. But how do we know that it's an accurate
picture? After all, everything depends on what the particle is doing between the
times of measurement.

3.13. Instantaneous velocity

a. By the instantaneous velocity (or "true velocity") of the particle with equation
of motion (1), at the time t, we niean the function of one variable

. . set + I1t) - set)
vet) = hm v.v(t,l1t) = hm 11 '

M~O M~O t

obtained by taking the limit of the average velocity as the averaging time I1t "goes to
zero." This is, of course, just the derivative

, ds(t)
vet) = set) =-

dt

of the distance function set) with respect to the time t. Since our averaging time is
now "infinitesimal," we can rest assured that no details of the particle's motion have
been overlooked in calculating vet).

From now on, when we talk about "velocity" without further qualification, we
mean instantaneous velocity. The quantity called "speed" in common parlance is
just the absolute value of the velocity.

b. Suppose a stone is dropped from a high tower, and let distance be measured
vertically downward from the initial position of the stone. Then, as in Sec. 2.11, the
stone, regarded as a particle, has the equation of motion

s = s(t) = 16t2, (2)
where s is measured in feet and t in seconds, provided that the stone has not yet hit
the ground. The stone's velocity at time t is just

v = vet) = ds(t) = !:..- 16t2 = 32t. (3)
dt dt

Note that v is an increasing function of time (Sec. 2.33), and is in fact directly pro-
portional to t.

3.14. Acceleration

a. Suppose we differentiate the velocity function vet) itself. This gives a new
function

, dv(t)
a = aCt) = v (t) = ---;It'
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called the acceleration of the particle at the time t. Since vet) = s'(t) is the first deriva-
tive (that is, the ordinary derivative) of the distance function set), the acceleration is
just the second derivative of set):

aCt) = dv(t) = ~ ds(t) = d2s(t)
dt dt dt dt2'

Both velocity and acceleration are, of course, rates of change (Sec. 2.42c), the first
the rate of change of the distance with respect to time, the second the rate of change
ofthe velocity with respect to time. Negative acceleration is often called deceleration.

b. The acceleration corresponding to the velocity (3), and hence in turn to the
distance function (2), is just

dv(t) d
a = aCt) = ---;It = dt 32t = 32.

Thus the acceleration of the falling stone has the constant value of32 feet per second
per second (more concisely, 32 ft/sec2), the so-called "acceleration due to gravity."

3.15. Example. As will be shown in Sec. 5.32c, a stone thrown vertically up-
ward from ground level with an initial velocity of Vo ft/sec (at the tinie t = 0) has
the equation of motion

s = s(t) = vot - 16t2, (4)

(6)

where, as usual, t is the time in seconds, and s is now the height of the stone above
the ground, in feet. Suppose Vo = 96 ft/sec. At what time does the stone stop rising
and begin to fall? What is the maximum height reached by the stone?

SOLUTION. Substituting Vo = 96 in (4), we get

s = s(t) = 96t - 16t2• (5)

Differentiating with respect to t, we then find that

d
v = v(t) = dt (96t - 16t2) = 96 - 32t.

The stone stops rising and begins to fall when its velocity changes from positive to
negative values. This change occurs at the precise instant when the velocity equals
zero. Setting v = 0 in (6) and solving for t, we find that this happens at the time

96
t = 32 = 3.

Thus the stone rises for 3 seconds, comes to rest instantaneously, and then falls down
for 3 more seconds, finally hitting the ground 6 seconds after being thrown upward
(note that s(6) = 0).

To find the maximum height achieved by the stone, we make the substitution
t = 3 in equation (5). This gives

s = 96. 3 - 16. 9 = 144.

Thus the stone rises to a height of 144 feet before beginning to fall back to the
ground. To get the stone's acceleration, we differentiate (6) once again, obtaining

d
a = dt (96 - 32t) = -32.

Thus the acceleration has the constant value of -32 ft/sec2•
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We graph the distance function (5) in Figure lA and the velocity function (6)
in Figure IB. There is no reason to make the horizontal and vertical units the same
in these graphs, and we have not done so. The curve in Figure lA is an upside-down
version of the curve in Figure 5, p. 49, with a shift and a scale change, and is again
called a parabola. Do not make the mistake of confusing this curve with the stone's
trajectory! In fact, the stone's trajectory is just the vertical line segment 0 :::;;s :::;;144,
traversed once in the upward direction and once in the downward direction. It is
clear from the figure that the function s(t) is increasing for the first 3 seconds of the
stone's motion and decreasing for the next 3 seconds, while v(t) is decreasing for the
whole 6 seconds. Note that the stone hits the ground at the same speed as its initial
speed.

As we will see in Sec. 3.3, the fact that the derivative v(t) = s'(t) equals zero for
the value of t at which the function s(t) achieves its maximum is not just a special
feature of this problem, but rather reflects a general property of differentiable
functions.
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PROBLEMS

Chap. 3

(8)

1. Suppose a particle moving along a straight line has the equation of motion
s = lOt + 5t2,

where s is measured in feet and t in seconds. Find the average velocity of the
particle over the interval from 20 to 20 + fl.t for !'.t = 1, 0.1 and 0.01. What
is the particle's instantaneous velocity at the time t = 20?

2. Suppose a particle moving along a straight line has the equation of motion

s = !t3 - 2t2 + 3t
3

(units unspecified). Find the particle's velocity v and acceleration a at the
time t. When does the direction of motion of the particle change? When does
the particle return to its initial position (at t = O)?

3. What can be said about the motion of a particle whose equation of motion
contains powers of t greater than 2?

4. A stone is thrown vertically upward with an initial velocity of 32 ft/sec by a
man standing at the edge of a roof 48 feet above the ground. Find the time
when the stone hits the ground, assuming that it misses the roof on the way
down. How fast is the stone going when it hits the ground?

5. How high should the roof be in the preceding problem if the stone is to hit
the ground 4 seconds later? 5 seconds later?

6. The equation of motion of a car starting from rest is
1

s = 2 kt2, (7)

where s is measured in feet and t in seconds. Interpret k. Find k if the car
reaches a speed of 60 mi/hr in 10 seconds flat. How long do you expect equa-
tion (7) to be valid?

7. A car is going Vo mi/hr when its brakes are suddenly applied. Suppose its
subsequent motion is described by the equation

1 k 2
S = vot - 2 t.

Interpret k. Find k if Vo = 60 mifhr and the car brakes to a complete stop in
22 seconds.

*8. Show that the distance travelled by a car after its brakes are suddenly applied
is proportional to the square of its speed vo'

*9. The graph of s(t) in Figure lA is symmetric in the line t = 3, that is, reflection
in this line does not change the graph. What does this mean physically?

*10. After t seconds a braked flywheel rotates through an angle of

8 = 8(t) = a + bt - et2

degrees, where a, band e are positive constants. Suitably define and then
determine the flywheel's angular velocity and angular acceleration. When does
the flywheel stop rotating?

3.2 RELATED RATES AND BUSINESS APPLICATIONS

3.21. First we consider a class of problems involving related rates. In such
problems we are given the rate of change of one quantity (usually with respect to
time), and we are asked to find the rate of change of another related quantity.
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a. Example. A large spherical balloon is losing air at the rate of one tenth of
a cubic foot per second (more concisely, 0.1 ft3/sec). How fast is the radius of the
balloon decreasing when its diameter is 6 feet?

SOLUTION. Let R be the radius and V the volume of the balloon. Then

4
V = -nR3

3 '
(1)

by elementary geometry. Since the size of the balloon is changing, both V and R
are functions of time. We could express this fact by writing V = V(t), R = R(t),
but it is better to just bear in mind that V and R depend on time. Differentiating (1)
with respect to time (identical functions have identical derivatives), we get

dV = ~n . 3R2 dR = 4nR2 dR
dt 3 dt dt'

with the help of Example 2.83c. We then solve this equation for dR/dt, obtaining

dR 1 dV
dt - 4nR2 dt'

or

dR
dt

0.1 f 3--- t /sec
4nR2 '

(2)

since dV/dt = -0.1 fe/sec, according to the statement of the problem. Note that
dV/dt is negative because air is being lost. When the balloon's diameter is 6 feet, its
radius is 3 feet. Substituting R = 3 into (2), we find that at that moment

dR 0.1 1
dt - - 4n . 9 = - 360n ft/sec,

or equivalently

dR
dt

12.60 2
--- = -- ~ -0.64 in/min
360n n

(inches per minute). Thus R is decreasing at the rate of about 0.64 in/min, a rather
slow leak for a large balloon. Note that dR/dt is itself a function of the radius. In
fact, the smaller the balloon, the larger dR/dt, as shown by (2).

b. Example. A ladder 20 feet long is leaning against a wall. Suppose the
bottom of the ladder is pulled away from the wall at a constant rate of 6 ftjmin.
How fast is the top of the ladder moving down the wall when

(a) The bottom of the ladder is 12 feet from the wall;
(b) The top of the ladder is 12 feet from the ground?

SOLUTION. Idealizing the ladder as a straight line segment, we introduce
rectangular coordinates as shown in Figure 2, where x is the distance between the
wall and the bottom of the ladder, and y is the height above ground of the top of
the ladder. By the Pythagorean theorem,

x2 + y2 = 202 = 400. (3)

Since the position of the ladder is changing, both x and yare functions of the time t,
a fact that could be emphasized by writing x = x(t), y = y(t). To find dy/dt, we use
the technique of implicit differentiation. Thus we differentiate (3) with respect to t,
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Figure 2.

6 ft/min

Chap. 3

obtaining the equation

dx dy
2x dt + 2y dt = 0,

which we then solve for dy/dt. The result is

dy x dx
dt y dt

or

dy 6xf;/'dt = -y tmm,

since dx/dt = 6 ft/min, according to the statement of the problem. Note that dxjdt
is positive because the bottom of the ladder is moving away from the wall, and dy/dt
is negative because the top of the ladder is moving down the wall. Therefore the top
of the ladder moves down the wall at the rate

Idyl = 6. 12 = 72 = 4.5 ft/min
dt --/400 - 122 16

when the bottom of the ladder is 12 feet from the wall, and at the rate of

I
dyl = 6--/400 - 12

2 = 6. 16 = 8 ft/min
dt 12 12

when the top of the ladder is 12 feet from the ground.

3.22. 8. The word "marginal" is encountered repeatedly in business and econo-
mics, in expressions like "marginal cost," "marginal revenue," "marginal profit," etc.
The second word in each expression is always some function, and the word "marginal"
merely calls for taking the derivative of this function, with respect to the independent
variable. For example, the total cost to a firm of producing a quantity Q of some
commodity is some function of Q, called the cost function and denoted by C(Q).
The derivative of the cost function, namely

C'(Q) = d~~Q), (4)
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(5)

is called the marginal cost, denoted by MC(Q). Here we follow the convention,
standard in economic theory, of denoting certain functions by pairs of capital letters,
like MC for "marginal cost," AR for "average revenue," and so on. (Do not think
of these pairs as products!) In this notation, (4) takes the form

MC(Q) = d~~).

b. In writing C(Q) and its derivative MC(Q), we tacitly assume that the units
of Q are such that C(Q) is defined for arbitrary Q ~ 0, and not just for the integers
Q = 0, 1, 2, . .. This assumption is certainly appropriate for oil, measured in pints
or gallons, or for salt, measured in pounds or tons, but it is absurd for aircraft carriers.
For TV sets the assumption makes sense if the output is large and if we are not too
literal-minded. Thus if the answer to a production problem is "Make 31.5 TV sets
a day," we can either make 63 sets in 2 days or else settle for making 31 or 32 sets
a day. The same remark applies to the application of calculus methods to a host
of other problems involving objects that come one at a time, like members of an
animal population.

c. Example. The cost function C(Q) is typically the sum of a constant term,
representing certain fixed costs, called the overhead, which are independent of the
output Q, and a variable term which depends on the actual value of Q. Prove that the
marginal cost is independent of the overhead. Find the marginal cost MC(Q) cor-
responding to the commonly used model of a cubic cost function

C(Q) = aQ3 + bQ2 + cQ + d, (6)

where a, b, c and d are constants. What can be said about the constant d?
SOLUTION. If C(Q) = f(Q) + k, where k is the overhead and hence a con-

stant, then clearly

MC(Q) = ~ [f(Q) + k] =,df(Q) + dk = df(Q)
dQ dQ dQ dQ'

so that MC(Q) is independent of the overhead. For the cost function (6), the con-
stant d is the overhead and therefore must be positive. Differentiating (6), we get
the corresponding marginal cost

MC(Q) = 3aQ2 + 2bQ + c.

d. Example. The function

AC(Q) = C(Q)
Q

(7)

is called the average cost. Express the marginal cost in terms of the average cost.
Show that the derivative of the average cost equals zero when the marginal cost
equals the average cost, and only then.

SOLUTION. Combining (5) and (7), we get the formula

d
MC(Q) = dQ QAC(Q),

expressing the marginal cost in terms of the average cost. The derivative of the
average cost equals

~ AC(Q) = ~ C(Q) = C'(Q)Q - C(Q)
dQ dQ Q Q2'
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by the rule for differentiating a quotient, and this equals zero when

C(Q)Q - C(Q) = 0,

and only then. But C(Q) = MC(Q), so that (8) can be written as

MC(Q)Q - C(Q) = 0,

or equivalently

MC(Q) = C~Q) = AC(Q).

This proves the assertion made in the statement of the example.

PROBLEMS

(8)

1. Air is being pumped into a large spherical balloon at the rate of 10 ft3/min.
How fast is the radius of the balloon increasing when its diameter is 4 feet?

2. Two ships A and B sail away from a point P along perpendicular routes.
Ship A is going 15 mi/hr, while ship B is going 20 mifhr. Suppose that at a
certain time A is 5 miles from P and B is 10 miles from P. How fast are the
ships moving apart 1 hour later?

3. The radius of a circle is increasing at a constant rate. Is the same true of its
area? Of its circumference?

4. A point moves away from the origin in the first quadrant along the curve
y = isx3• Which coordinate, x or y, is increasing faster?

5. The length of one side of a rectangle increases at 2 in/sec, while the length of
the other side decreases at 3 in/sec. At a certain moment the first side is
20 inches long and the second side is 50 inches long. Is the area of the rectangle
increasing or decreasing at this moment? How fast?

6. A man 6 feet tall walks at a speed of 4 ft/sec toward a street light 18 feet above
the ground. How fast is the length of the man's shadow decreasing? Does
the answer depend on his distance from the light?

7. Let R(Q) be the total revenue received by a firm from the sale of a quantity Q
of some commodity. Then the derivative R'(Q) is called the marginal revenue,
denoted by MR(Q), and the function

AR(Q) = R(Q)
Q

is called the average revenue. Express the marginal revenue in terms of the
average revenue.

8. Suppose the curve of average cost is a straight line

AC(Q) = a - mQ (a> 0, m> 0),

with negative slope (average cost typically decreases as output increases). Find
the curve of marginal cost.

9. Suppose the demand for a commodity produced by a monopolistic firm is
described by the function Q = Q(P), where Q is the quantity demanded at the
price P. What does the truism "The greater the price, the less the demand" tell
us about the function Q(P)?
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10. Let Q(P) be the same as in the preceding problem. Then the firm's total revenue
is clearly R(Q) = PQ(P), so that its profit is just

n (Q) = R(Q) - C(Q) = PQ(P) - C(Q),

where C(Q) is the firm's total cost function. Show that Q = Q(P) has an in-
verse function P = P(Q), allowing us to also write the profit as

n (Q) = QP(Q) - C(Q).

*11. How fast is the surface area of the balloon in Problem 1 increasing when its
diameter is 8 feet?

*12. In the ladder problem of Example 3.21b, find the acceleration of the top of
the ladder when the bottom of the ladder is 16 feet from the wall.

3.3 PROPERTIES OF CONTINUOUS FUNCTIONS

So far, one of our chief concerns has been to acquire the technique of differentia-
tion, so that we can find the derivative f' of a given function f. But what do we do
with f' once we have found it? As we will see later in this chapter, knowledge of f'
can tell us a great deal about the behavior of the original function f. Knowledge
of the second derivative f" also turns out to be a great asset in many cases, because
of the further light it sheds on the behavior of f.

Remarkably enough, there is also much that can be deduced from the mere
fact that a function is continuous in an interval, especially in a closed interval, as we
now show.

3.31. The continuous image of a closed interval

a. The properties of a function continuous in a closed interval (Sec. 2.65c) all
stem from the following key proposition, whose proof is a bit too hard for a first
course in calculus:

THEOREM. Iff is continuous in a closed interval I = [a, b] and if f is not a con-
stant function, then the range off, namely the set of all values taken by f at the points
of I, is itself a closed interval.

This fact is expressed by saying that "a continuous function maps a closed
interval into a closed interval," or that "the continuous image of a closed interval
is a closed interval."

b. We must insist that f be nonconstant, since the function f(x) == C maps I
into the single point C, hardly a closed interval! A function which is continuous in
an open interval can map the interval into any other' kind of interval, open, closed
or half-open (see Prob. 10). Thus it is crucial to the validity of the theorem that the
interval I be closed. The set of values taken by f at the points of I will be denoted
by f(I). Do not think of f(I) as the value of f at I, which is meaningless. In fact,
f(I) is not a number, but rather the set {f(x): x E I}.

c. What this means geometrically is shown in Figure 3, where the solid curve
is the graph of a function f continuous in a closed interval I = [a, b]. Suppose we
drop perpendiculars from all the points of the curve y = f(x) onto the y-axis. Then,
according to our theorem, the resulting points completely "fill up" some closed
interval Em, M] on the y-axis, as shown in the figure. Note that in general several
points of [G, b] correspond to the same point of [m, M]' For example, the points r
and s shown in the figure are both "mapped" by f into the same point IE [m, M]'
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3.32. Maxima and minima

a. Let f be a function defined in an interval I, and suppose there is a point
pEl such that f(x) ::::;f(p) for all x E I. Then f(p) is called the maximum of f in I,
and we say that f has this maximum at the point p. Similarly, suppose there is a
point q E I such that f(x) ~ f(q) for all x E I. Then f(q) is called the minimum of
f in I, and we say that f has this minimum at the point q. We also say that "f takes
its maximum value at p and its minimum value at q." Note that f may well take its
maximum (or minimum) value, provided there is one, at more than one point of I.

The word extremum refers to either a maximum or a minimum, and the phrase
extreme value refers to either a maximum value or a minimum value. The words
"maximum," "minimum" and "extremum" have Latin plurals, namely "maxima,"
"minima" and "extrema." Extrema ofa different kind will be introduced in Sec. 3.51,
and will be known as local extrema, as opposed to the kind of extrema considered
here, which are often called global extrema.

b. For example, if I is the closed interval [ -1, 1], the function x2 has its maxi-
mum in I, equal to 1, at both points x = :t:1, and its minimum in I, equal to 0, at
the point x = O. In the same interval, the function x3 has its maximum, equal to 1,
at the point x = 1, and its minimum, equal to -1, at the point x = -1. A con-
stant function, say f(x) == k, has a maximum and a minimum, both equal to k, at
every point of any interval. On the other hand, the function x has neither a maxi-
mum nor a minimum in the open interval (0, 1), since there is no largest number less
than 1 and no smallest number greater than 0 (Sec. 1.4, Prob. 12), and the same
is true of the functions x2 and x3 in this interval. All three functions x, x2 and x3 have
a minimum, equal to 0, in the half-open interval [0, 1), at the point x = 0, but again
none of them has a maximum in [0,1). As we now see, this failure to have one or
both extrema cannot occur if the function is continuous in a closed interval.

c. THEOREM. If f is continuous in a closed interval I = [a, b], then I contains
points p and q such that

f(q) ::::;f(x) ::::;f(p) (1)
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for all x E I. In other words, f has both a maximum and a minimum in I, at the points p
and q, respectively.

Proof. We can immediately exclude the case of a constant function, for which
the theorem is trivially true. Thus, suppose f is not a constant function. Then, by
Theorem 3.31a, the range of f, namely the set f(1), is a closed interval. Let this
interval be [m, M]' Then, for all x E I, we have f(x) E [m, M], or equivalently

m ~ f(x) ~ M, (2)

by the very meaning of f(1). Let p be any point of I such that f(p) = M and q any
point of I such that f(q) = m. Again, such points p and q exist by the very meaning
of f(1). We can then write (2) in the form (1). 0

d. Naturally, M is the maximum of f in I, and m is the minimum of f in I.
Interpreted geometrically, the theorem means that the graph of a function f con-
tinuous in a closed interval I must have both a "highest point" P = (p, M) and a
"lowest point" Q = (q, m), as illustrated by Figure 3. It is important to note that f
may take one or both of its extreme values at end points of I (give examples), although
this is not the case for the function shown in Figure 3.

3.33. The intermediate value theorem

a. Let k be any number between f(a) and f(b). Then, since both f(a) and f(b)
belong to the interval f(1) = [m, M], so does k. Therefore k is a value of f taken at
some point c in the interval [a, b]. But c cannot be one of the end points a and b,
since k lies between f(a) and f(b), and therefore cannot coincide with either f(a)
and f(b). The situation is illustrated in Figure 3.

b. This key property of continuous functions deserves a name of its own:
THEOREM (Intermediate value theorem). Iff is continuous in an interval I, which

need not be closed, and iff takes different values f(a) and f(/3) at two points a and /3
of I, then f takes every value between f(a) and f(/3) at some point between a and /3.

Proof. In view of the preceding remarks, we need only show that f is contin-
uous in [a, /3] if a < /3, or in [/3, a] if /3 < a. But, by hypothesis, f is continuous
in an interval I containing a and /3. Therefore f is certainly continuous in the closed
interval with end points a and /3, since this is the smallest interval containing both
a and /3. 0

PROBLEMS

1. Find the extrema, if any, of the function f(x) = l/x in the interval
(a) (0,1); (b) (0,1]; (c) [1,2]; (d) (0, (0); (e) (- 00, -1].

2. Find the extrema, if any, of the function f(x) = [x], where [x] is the integral
part of x (Sec. 1.4, Prob. 10), in the interval
(a) (0,1); (b) (0, 1]; (c) (-1,0]; (d) (0,00); (e) (- 00,00).

3. Verify that if a function f is increasing in a closed interval I = [a, b], then f
has global extrema in I, even if f is discontinuous. Where does f take its
extreme values? How about the case of decreasing f?

4. "If f is continuous in an interval I and if f takes values f(a) and f(/3) with
opposite signs at two points a and fJ of I, then f equals zero at some point
between a and /3." True or false? Why?
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(3)

5. Is the function

f(x) = {x + 1 if -1::s; x < 0,
x-I if O::S;x::s;l

continuous? Does it map the closed interval -1 ::s; x ::s; 1 into a closed interval?
6. Doesthefunction(3)maptheclosedinterval-!::S; x::s; !intoaclosedinterval?
7. Investigate the global extrema of the function (3) in the interval -1 ::s; x ::s; 1.
*8. Give an example of a continuous function mapping a finite interval into an

infinite interval.
*9. Give an example of a continuous function mapping an infinite interval into a

finite interval.
*10. Give an example of a continuous function mapping an open interval into

(a) An open interval; (b) A half-open interval; (c) A closed interval.

3.4 PROPERTIES OF DIFFERENTIABLE FUNCTIONS

3.41. a. Having investigated the properties of continuous functions, we now
return to the study of differentiable functions. We begin by establishing the fol-
lowing interesting fa~t: Iff is differentiable at a point p, with derivative f'(p), and if
f'(p) is positive, then f is increasing in some neighborhood of p. To show this, we
observe that just as in Sec. 2.55a

lim [f(P + l1x) - f(p) - f'(P)J = 0,
Ax-O l1x

by the definition of the derivative f'(p), or equivalently

lim [Q(l1x) - f'(p)] = 0,
Ax ...•0

in terms of the difference quotient

Q(l1x) = f(p + l1x) - f(p) = Llj(p).
l1x l1x

In "e, lJ language" this means that, given any e > 0, there is a lJ > 0 such that

IQ(l1x) - f'(p)/ < e

whenever 0 < 111xl< lJ. Let e = f'(p) > O. Then there is a lJ > 0 such that

IQ(l1x) - f'(p) I < f'(p),

or equivalently

- f'(p) < Q(l1x) - f'(p) < f'(p),

whenever 0 < lL1xl < lJ. But then

o < Q(l1x) < 2f'(p) (1)

whenever 0 < 111xl< lJ. Therefore the difference quotient Q(L1x) = l1f(p)/l1x is
positive whenever 0 < l1x < lJ or - lJ < L1x < 0, which means that the increments
L1f(p) and l1x have the same sign under these conditions. In other words,

f(p + l1x) - f(p) > 0 (2)
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(3)

(4)

f(p + Ax) - f(p) < 0

if - 0 < Ax < O. Changing the sign of Ax in (3), we find that

f(p - Ax) - f(p) < 0

if 0 < Ax < (j. Combining (2) and (4), we finally get

f(p - Ax) < f(p) < f(p + Ax)

if 0 < Ax < 0, which shows at once that f is increasing in some neighborhood of the
point p, namely in the neighborhood (p - 0, p + D) or in any smaller neighborhood.

b. In virtually the same way, we can show that iff is differentiable at a point p,
with derivative f'(p), and if f'(p) is negative, then f is decreasing in some neighborhood
of p. This time we choose B = - f'(p) > 0, obtaining first

f'(p) < Q(Ax) - f'(p) < - f'(p)

and then
2f'(p) < Q(Ax) < 0,

instead of (1),whenever 0 < 18xl < D. Therefore Q(8x)is negative whenever 0 < 8x < 0
or -(j < 8x < 0, which means that the increments 8f(p) and 8x have opposite signs
under these conditions. In other words,

if 0 < 8x < (j, while

f(p + 8x) - f(p) < 0 (5)

(6)

(7)

f(p + 8x) - f(p) > 0

if -(j < 8x < O. Changing the sign of 8x in (6), we find that

f(p - 8X) - f(p) > 0

if 0 < Ax < O. Combining (5) and (7), we finally get

f(p - 8x) > f(p) > f(p + 8x)

if 0 < 8x < 0, which shows at once that f is decreasing in some neighborhood of
the point p, namely in the neighborhood (p - 0, p + (j) or in any smaller neigh-
borhood.

c. By an interior point of an interval I (open, closed or half-open), we mean
any point of I other than its end points. A function f is said to vanish at a point c
if f(c) = O. In other words, "to vanish" means the same thing as "to equal zero."
If a function f vanishes at every point of an interval I, we say that f vanishes iden-
tically in I. This extra vocabulary will come in handy time and again.

3.42. Rolle's theorem

a. Our next result is a stepping stone on the way to another, more important
result, called the "mean value theorem," but it is of considerable interest in its own
right.

THEOREM (Rolle's theorem). Let f be continuous in the closed interval [a, b] and
differentiable, with derivative 1', in the open interval (a, b). Suppose that f(a) = f(b) = k.
Then there is a point c E (a, b) such that f'(c) = O.

Proof. Do not be put off by the formal language. A more informal way of
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stating the theorem is the following: Let f be continuous in a closed interval
I = [a, b] and differentiable at every interior point of I. Suppose f takes the same
value at both end points of I. Then the derivative f' vanishes at some interior point
of/.

To prove the theorem, we first observe that f has both a maximum M and a
minimum m in I = [a, b], by Theorem 3.32c, where m ~ k ~ M, since f equals k
at the points a and b. If m = k = M, then f reduces to the constant function
f(x) == k, whose derivative vanishes at every interior point of I, and the theorem is
proved. Otherwise, we have either m < k or M > k. Suppose M > k, and let e be
a point of I such that f(e) = M. Then e E (a, b), that is, e is an interior point of I,
so that the derivative f'(e) exists. If f'(e) i= 0, then f'(e) is either positive or negative.
In the first case, f is increasing in some neighborhood of e, by Sec. 3.41a, while in
the second case, f is decreasing in some neighborhood of e, by Sec. 3.41b. In either
case, the neighborhood contains values of f larger than M, so that M cannot be the
maximum of f. It follows that f'(e) = 0. The proof for m < k is almost identical
(give the details). 0

b. Rolle's theorem has a simple geometrical interpretation. It merely says that
if the end points of the curve

y = f(x) (a ~ x ~ b) (8)

have the same ordinate, so that f(a) = f(b), then the slope of the tangent to the
curve vanishes and hence is horizontal at some "intermediate point," that is, at some
point of the curve other than its end points. This situation is illustrated by Figure 4,
which shows that the curve can actually have horizontal tangents at more than one
intermediate point, in particular, at points other than those with the maximum and
minimum ordinates M and m.

3.43. The mean value theorem

a. If f(a) i= f(b), we can no longer assert that the curve (8) has a horizontal
tangent at some intermediate point. However, we can now assert that at some
intermediate point the curve has a tangent with the same slope as the chord joining
its end points A = (a,f(a)) and B = (b,f(b)), that is, a tangent with slope

f(b) - f(a)
b-a

as illustrated by Figure 5.

v

M

x

Figure 4.
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THEOREM (Mean value theorem). Let f be continuous in the closed interval [a, b]
and differentiable, with derivative 1', in the open interval (a, b). Then there is a point
C E (a, b) such that

f'(c) = f(i = ~(a), (9)

or equivalently

f(b) - f(a) = f'(c)(b - a). (10)

Proof. We introduce a new function

g(x) = f(x) - kx,

choosing the constant k in such a way that g(x) has the same value at both end points
a and b. Then k must satisfy the equation

g(a) = f(a) - ka = f(b) - kb = g(b),

with solution

k = f(b) - f(a).
b-a

With this choice of k, g(x) satisfies all the conditions of Rolle's theorem. But then
there is a point c E (a, b) such that

g'(c) = f'(c) - k = 0,

that is, such that

f'(c) = k = f(b) - f(a). D
b - a

b. COROLLARY (Mean value theorem in increment form). Iff is differentiable in
an interval I containing the points x and x + L\x, then the increment off at x can be
written in the form

L\f(x) = f(x + L\x) - f(x) = f'(x + ocL\x)L\x, (11)

where 0 < oc < 1.
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Proof. Here it is not necessary to state explicitly that / is continuous in I,
since this follows automatically from the assumption that / is differentiable in I
(Sec. 2.66). Choosing a = x, b = x + ~x in (10), we obtain

N(x) = I'(c) ~x, (12)

where c lies between x and x + ~x, regardless of the sign of ~x. Therefore the
number

c-x
(X=--

~x

is always positive and lies in the interval (0, 1), or equivalently

e=x+(X~x

Comparing (12) and (13), we get (11). 0

(0 < (X < 1). (13)

PROBLEMS

1. Check the validity of Rolle's theorem for the function

/(x) = (x - l)(x - 2)(x - 3).

In other words, verify that the derivative I' vanishes at a point in the interval
(1, 2) and at a point in the interval (2, 3).

2. The function
/(x) = Ixl ( - a :::;;x :::;;a)

takes the same value la\ at both points x = :ta, but the derivative I' does not
vanish at any point e E (-a, a). Why doesn't this contradict Rolle's theorem?

3. Show that the mean value theorem (10) remains valid even if a > b.
4. At what points of the curve y = x3 is the tangent parallel to the chord joining

the points A = (- 3, - 9) and B = (3,9)?
5. According to formula (10),

/(2) - /(1) = I'(e) (1 < e < 2).

Find e if /(x) = Ijx.
6. According to formula (11),

/(1 + ~x) - /(1) = 1'(1 + (X~x) ~x (0 < (X< 1).

Find (X if /(x) = x3, ~x = -1.
7. Justify the following "kinematic interpretation" of the mean value theorem: If a

train traverses the distance between two stations at an average velocity Vav, then
there is a moment when the train's instantaneous velocity equals vav•

*8. Let

{

~ (3 - x2) if x < 1,

/(x) =
~ if x~1.
x

Find two points e satisfying formula (10) for a = 0, b = 2.
*9. Show that the square roots of any two consecutive integers exceeding 24 differ

by less than 0.1.
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3.5 APPLICATIONS OF THE MEAN VALUE THEOREM

3.51. We already know that the derivative of a constant function vanishes
everywhere: More concisely, if f(x) == constant, then 1'(x) == O. But, conversely,
does 1'(x) == 0 imply f(x) == constant? Yes, if the domain of f is an interval, as we
now show.

THEOREM. Iff is differentiable in an interval I, and if the derivative l' vanishes
identically in I, then f(x) == constant in I, that is, f has the same value at every point
ofI.

Proof. Let Xo be a fixed point of I, and let x be any other point of I. Then,
by the mean value theorem,

f(x) - f(xo) = 1'(c)(x - xo),

where c lies between Xo and x. But 1'(c) = 0, since c belongs to I, and therefore
f(x) - f(xo) = 0 or f(x) = f(xo)' Since x is an arbitrary point of I, it follows that
f(x) = f(xo) for every x E I. 0

3.52. Antiderivatives

a. Given a function f(x) defined in an interval I, suppose F(x) is another func-
tion defined in I such that

dF(x) = F'(x) = f(x)
dx

for every x E I. Then F(x) is said to be an antiderivative of f(x), in the interval I.
For example, tx3 is an antiderivative of x2 in (- 00, (0), since

d 1__ x3 = x2
dx 3

for every x E (- 00, (0). If F(x) is an anti derivative of f(x) in I, then so is

G(x) == F(x) + C,

where C is an arbitrary constant, since

dG(x) = ~ [F(x) + C] = dF(x) + dC = dF(x) = f(x).
dx dx dx dx dx

(1)

The next proposition shows that there are no other antiderivatives of f(x).
b. THEOREM. Let F(x) be any antiderivative of f(x) in an interval I. Then every

other antiderivative of f(x) in I is of the form (1).
Proof. Let G(x) be any other antiderivative of f(x) in I, and let H(x) =

G(x) - F(x). Then .

H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0

for every x E I, that is, the derivative H' vanishes identically in I. It follows from
the preceding theorem that H has the same value, call it C, at every point of I. In
other words,

H(x) = G(x) - F(x) == C,

which is equivalent to (1). 0
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3.53. The indefinite integral

8. Let F(x) be an antiderivative of f(x) in I, so that F'(x) = f(x) for every
x E I. Then, as just shown, the "general antiderivative" of f(x) in I is of the form

F(x) + C,

where C is an arbitrary constant. This expression is also called the indefinite integral
of f(x), and is denoted by

Thus

J f(x) dx

J f(x) dx = F(x) + C,

(2)

(3)

by definition, so that the indefinite integral is defined only to within an arbitrary
"additive constant." The symbol f is called the integral sign. The operation leading
from the function f(x), called the integrand, to the expression (2) is called (indefinite)
integration, with respect to x, the argument x is called the variable of integration, and
the constant C is called the constant of integration. Note that the expression behind
the integral sign in (2) is the product of the integrand f(x) and the differential dx of
the variable of integration. Recalling Sec. 2.55a, we recognize this product as the
differential

dF(x) = F'(x) dx = f(x) dx

of the antiderivative F(x), so that (3) can also be written as

S dF(x) = F(x) + C.

In writing (3), it is tacitly assumed that the formula is an identity for all x in
some underlying interval I in which f(x) and F(x) are both defined; however, I is
usually left unspecified. The convention is to give f and F the same argument, in
keeping with the formula F'(x) = f(x), but we could just as well write

S f(t) dt = F(t) + C,

say, replacing x by some other symbol (here t) in both sides of (3). Differentiating (3),
we get

d S d dF(x) I

dx f(x) dx = dx [F(x) + C] = ~ = F(x),

so that

d~ S f(x) dx = f(x). (4)

b. Since a function f(x) is obviously an antiderivative of its own derivative
f'(x), we have

S f'(x) dx = f(x) + c.
This formula can be used to derive an integration formula from any differentiation
formula. For example, the formula

d X,+l (r + l)x' ,
---=---=X
dx r + 1 r + .1

/
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(5)

(Sec. 2.74e), valid for arbitrary real r =1= -1, leads at once to the formula

f
X,+l

x'dx=--+C
r + 1

if r =1= -1. Choosing r = -1in (5), we get the formula

f ~= 2JX + C,

valid in the interval (0, (0), but in no larger interval, while the choice r = !gives the
formula

f Xl/3 dx = ~X4/3 + C,

valid in the whole interval (- 00, (0).
c. THEOREM. Suppose f(x) and g(x) have indefinite integrals in the same interval I.

Then

f [af(x) + bg(x)] dx = a f f(x) dx + b f g(x) dx, (6)

where a 'and b are arbitrary constants.
Proof. It follows from (4), applied to the function af(x) + bg(x), that

:x f [af(x) + bg(x)] dx = af(x) + bg(x).

On the other hand, by the usual rules of differentiation,

~ [a f f(x) dx + b f g(x) dXJ = a :x f f(x) dx + b :x f g(x) dx = af(x) + bg(x),

where we use (4) twice more. Thus the two sides of (6) have the same derivative in I,
and hence can differ only by an arbitrary constant, by the same argument as in the
proof of Theorem 3.52b. But then (6) holds, since the indefinite integral on the left
is defined only to within an arbitrary "additive constant." 0

By virtually the same argument, you can easily convince yourself of the validity
of the more general formula

S[Cdl(X) + cdZ(x) + ... + cnf,,(x)] dx

= Cl f fl(X) dx + C2 f f2(X) dx + ... + Cn f f,,(x) dx, (7)

where fl(X), fZ(x), ... , f,,(x) are functions which have indefinite integrals in the same
interval, and Cl, C2, ••• , Cn are arbitrary constants.

d. Example. Evaluate

f (5X4 ~ 6x2 + :2) dx.
SOLUTION. By (7), we have

f (5X4
- 6x2 + ~2)dx = 5 f x4 dx - 6 S x2 dx + 2 f ~~= x5 - 2x3 - ~ + C,

with the help of (5). Note that the constants of integration contributed by each of the
three integrals separately can be combined into a single constant of integration C.
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3.54. In Sec. 3.41c we showed that if f is differentiable at a point xo, with
derivative f'(xo), and if f'(xo) is positive, then f is increasing in some neighborhood
of xo' We now use the mean value theorem to establish the following closely related
result: Iff is differentiable in an interval I, with derivative f', and iff' is positive at
every interior point of I, then f is increasing in I. To see this, let Xl and X2 be any
two points of I such that Xl < X2' Then, by the mean value theorem,

(8)

for some point e between Xl and X2' Therefore e is an interior point of I, so that
f'(e) > O. The right side of(8) is positive, being the product of two positive numbers,
andhencef(x2) - f(xl)is also positive. In other words, Xl < X2impliesf(xl) < f(X2),
which means that f is increasing in I, as claimed.

Virtually the same argument shows that if f is differentiable in an interval I,
with derivative f', and iff' is negative at every interior point of I, then f is decreasing
in I. Give the details.

For example, the function f(x) = (x - 1)3 shown in Figure 6A is increasing in
both intervals (- 00, I] and [1, 00), since f'(x) = 3(x - 1)2 > 0 if X < 1 or X > 1.
Therefore f(x) is increasing in the whole interval (- 00,00). Similarly, the function
g(x) = 1 - x4 shown in Figure 6B is increasing in ( - 00, 0], since g'(x) = - 4x3 > 0
if X < 0, and decreasing in [0, 00), since g'(x) = - 4x3 < 0 if X > O.

PROBLEMS

1. The function

f(x) = { 1 ~f X > 0,
-1 If x<O

is not a constant, but the derivative f' vanishes at every point of the domain
of f. Why doesn't this contradict Theorem 3.51?
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2. Find all antiderivatives of the function
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S dx = S 1 . dx = x + c.

(a) x3;

3. Verify that

1
(b) x2 (x #- 0); (c) JX (x ~ 0).

4. Show that if

S f(x) dx = F(x) + C,

then

S f(ax + b)dx = ~F(aX + b) + C

for arbitrary constants a#-O and b.
5. Evaluate

(a) S(x4 - 3x2 + X - 4) dx; (b) S(1 - x)(l - 2x)(1 - 3x) dx;

(c) S x :Xl dx; (d) S x2(1 - JX)3 dx.

6. "The indefinite integral of a polynomial of degree n is a polynomial of degree
n + 1." True or false?

7. Is the derivative of an increasing function necessarily increasing?
8. In which intervals are the following functions increasing? Decreasing?

2x
(c) 1 + x2'

*9. What can be said about the function f if f(n)(x) == O?

3.6 LOCAL EXTREMA

3.61. a. Figure 7 shows the graph of a function f continuous in a closed inter-
val [a, b]. Just as in Figure 3, p. 110, f takes its maximum in [a, b], equal to M, at the
"highest point" of the graph, namely P = (p, M), and its minimum in [a, b], equal to
m, at the "lowest point" of the graph, namely A = (a, m), which this time happens
to be an end point of the graph. But now there also seems to be something special
about the behavior of the graph at certain other points, namely Q, Rand S. In fact,
Q is "higher" than all "nearby points" of the graph, although not as high as P, while
each of the points Rand S is "lower" than all "nearby points" of the graph, although
not as low as A.

b. We now make these qualitative notions precise. Let f be a function defined
in an interval I, and suppose there is a point pEl such that f(x) ~ f(p) for all x
"sufficiently near" p, that is, for all x in some neighborhood of p. Then f is said
to have a local maximum, equal to f(p), at the point p. Similarly, suppose there is a
point q E I such that f(x) ~ f(q) for all x in some neighborhood of q. Then f is said
to have a local minimum, equal to f(q), at the point q. The term local extremum
refers to a local maximum or a local minimum.
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c. Make sure you understand the crucial distinction between local extrema, as
just defined, and the kind of extrema defined in Sec. 3.32a. The latter, which will
henceforth be called global extrema whenever there is any possibility of confusion,
involve comparison of a proposed extremum f(p) with the value of f at every point
of the interval I in which f is defined, while the former only require comparison of
f(p) with the values of f at points "sufficiently near" p, or, for that matter, "arbitrarily
near" p. The adjective "global," which suggests the "overall" behavior of f in the
whole interval I, and the adjective "local," which suggests the behavior of f in the
"immediate vicinity" of the point p, are well-suited to emphasize this distinction.
In other books you will often encounter the terms absolute extremum and relative
extremum, as synonyms for global extremum and local extremum.

3.62. a. Unlike the case of a global maximum or minimum, a function can have
several distinct (that is, different) local maxima or minima. On the other hand, as
noted in Sec. 3.32a, a function can take its global extremum at more than one
point. For example, the function/shown in Figure 7 has distinct local maxima at
the points p and q, and distinct local minima at the points rand s. The global
minimum of / at the point a is not a local minimum, since / is not defined in a
neighborhood of a (it is not enough to be defined on only one side of a). For the
same reason, a function defined in an interval I can have local extrema only at
interior points of I, that is, at points of I other than the end points of I. The
function / in Figure 7 has neither a global extremum nor a local extremum at the
point b, but b is still special in the sense that it is an end point ofthe interval [a, b].
(In this regard, see Prob. 1.) Note that/has both a global maximum and a local
maximum at the point p. In fact, if a function/is defined in an interval I, then any
global extremum of/at an interior point of I is automatically a local extremum of
/. (Why is this so?)

b. A local maximum f(p) is said to be strict if f(x) < f(p), with < instead of
~, for all x "sufficiently near" p but not equal to p, that is, for all x in some deleted
neighborhood of p (Sec. 1.63a). Similarly, a local minimum f(q) is said to be strict
if f(x) > f(q), with > instead of ~, for all. x in some deleted neighborhood of q.
For example, all four local extrema of the function in Figure 7 are strict. On the
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other hand, a constant function has both a local maximum and a local minimum
at every point, but none of these extrema is strict.

3.63. a. In practical problems involving local extrema, we will always be con-
cerned with a function f defined in some interval I, where f is differentiable at every
point of I with the possible exception of certain special points. We say that f fails
to have a derivative at a point p, or that the derivative f'(p) fails to exist, if the limit
defining f'(p) either does not exist or is infinite. .

THEOREM. Iff has a local extremum at a point p, then either f fails to have a
derivative at p, or f'(p) exists and equals zero.

Proof. Either f'(p) exists or it does not. Suppose f'(p) exists and is nonzero.
Then f'(p) is either positive or negative. In the first case, f is increasing in some
neighborhood of p, by Sec. 3.41a, while in the second case, f is decreasing in some
neighborhood of p, by Sec. 3.41b. In either case, this neighborhood, or any smaller
neighborhood, contains values of f larger than f(p) and values of f smaller than
f(p), so that f(p) cannot be either a local maximum or a local minimum of f. It
follows that f'(p) = O. 0

This argument, of course, closely resembles that used in the proof of Rolle's
theorem.

b. Interpreted geometrically, the theorem says that if a function f has a local
extremum at a point p, then either the graph of f has no tangent at the point
P = (p, f(p)), if f'(p) fails to exist, or the graph of f has a horizontal tangent at P,
if f'(p) = O. These two possibilities are illustrated in Figure 8A, where each of the
functions has a (strict) local maximum at p.

c. By a critical point of a function f we mean either a point where f has no
derivative or a point where the derivative of f vanishes, and by a stationary point
of f we mean a point where the derivative of f vanishes. Thus a critical point of f
is either a point where f has no derivative or a stationary point of f. According to
the theorem, if f has a local extremum at p, then p is a critical point of f. On the
other hand, if p is a critical point of f, there is no necessity for f to have a local
extremum at p. This is illustrated by Figure 8B, which shows two functions, each
with a critical point at p, but neither with a local extremum at p.

Thus what we really want are conditions on a function f which compel f to
have a local extremum at a given critical point p. (We will always assume that f

o

y

I
I
IA zero derivative at p
I
I

~ no derivative at p
I
I

P

A

x

y

B
Figure 8.
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is continuous at p.) Such conditions will now be presented in the form of two tests
for a local extremum, one called the first derivative test, the other called the second
derivative test.

3.64. The first derivative test

a. Suppose f is differentiable in a deleted neighborhood of a point p, and
suppose the derivative f' has one sign to the left of p and the opposite sign to the
right of p. Then f' is said to change sign in going through p, from the sign on the left
of p to the sign on the right of p. Note that we do not require f to be differentiable
at the point p itself and in fact f'(p) may fail to exist.

THEOREM(First derivative test for a local extremum). Let p be a critical point of
f, and suppose f' changes sign in going through p. Then f has a strict local extremum
at p. The extremum is a maximum iff' changes sign from plus to minus, and a mini.
mum iff' changes sign from minus to plus.

Proof. Suppose f' changes sign from plus to minus in going through p, in a
deleted b-neighborhood of p, that is, in the union of intervals (p - fJ, p) u (p, p + fJ)
(Sec. 1.63b). By the mean value theorem in increment form,

Therefore

f(p + dx) - f(p) = f'(p + ccdx) dx (0 < cc < 1).

f(p + dx) - f(p) < 0

if -fJ < dx < 0, since then f'(p + ccdx) > 0, dx < 0, and similarly

f(p + dx) - f(p) < 0

if 0 < dx < 15, since then f'(p + ccdx) < 0, dx > O. In other words,

f(p + dx) < f(p)

(1)

(2)

(3)

if 0 < Idxl < fJ, so that f has a strict local maximum at p. On the other hand, if
f' changes sign from minus to plus in going through p, then we get > instead of <
in (1), (2) and (3), so that f has a strict local minimum at p (check the details). 0

b. Interpreted geometrically, the first derivative test says that if the slope of
the tangent to the graph of f at a variable point P x = (x,f(x» changes from plus
to minus as Px goes through the point P = (p, f(p», then f has a strict local maxi-
mum at p even if there is no tangent to the graph of f at P. (What is the analogous
statement for the case where the slope of the tangent changes sign from minus to
plus?) That this is actually so is apparent from Figure 8A. On the other hand, it is
easy to see that the slope of the tangent to the graph of both functions in Figure 8B
does not change sign in going through P, and is in fact positive on both sides of P.
This is because both functions are increasing in a neighborhood of p, and hence
cannot have a local extremum at p.

c. Example. Find the local ex,trema of the function

f(x) = (x - l)x213•

SOLUTION. Differentiating (4), we get

2 5x - 2
f'(x) = X2/3 + - (x - I)X-1/3 = ---

3 3X1/3 '

(4)

(5)

with the help of formulas (14) and (15), p. 78, and the formula x'xs = x.+s
, to be

proved in Sec. 4.45a. Therefore f has two critical points, the point x = 0 at which
the derivative f' failS to exist (check this directly), and the point x = t at which f'
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vanishes. It follows from (5) that
f'(x) > 0 if

f'(x) < 0 if

x < 0,
2

0< x < 5'
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2
f'(x) > 0 if x > -

5
(the cube root of a negative number is negative). Thus f' changes sign from plus to
minus in going through x = 0 and from minus to plus in going through x = l
Therefore, by the first derivative test, f has a strict relative maximum, equal to 0,
at x = 0, and a strict relative minimum, equal to

_~(~)2/3
5 5 '

at x = ~, as confirmed by Figure 9.

3.65. a. The next test is applicable only when the first derivative f'(p) and
second derivative f"(p) both exist, but this is the most common situation.

THEOREM (Second derivative test for a local extremum). Let p be a stationary
point off, and suppose f"(p) exists and is nonzero. Then f has a strict local extremum
at p. The extremum is a maximum iff"(p) < 0 and a minimum iff"(p) > O.

Proof. Since the second derivative f"(p) exists, f is differentiable in a neigh-
borhood of p, that is, f' exists in a neighborhood of p. Moreover, f'(p) = 0, since p
is a stationary point of f. Applying the argument in Sec. 3.41 to the derivative f'
instead of to the function f itself, we see that f' is decreasing in a neighborhood of
p if f"(p) < 0 and increasing in a neighborhood of p if f"(p) > O. Since f'(p) = 0,
it follows that f' changes sign from plus to minus in going through p if f"(p) < 0
and from minus to plus if f"(p) > O. The second derivative test is now an immediate
consequence of the first derivative test. 0

b. The function f mayor may not have a local extremum at p if f"(p) = O.
For example, f"(0) = 0 if f(x) = x3 or if f(x) = ::!:x4, but in the first case f has no
local extremum at x = 0, being increasing in (- 00, (0), by Sec. 3.54, while in the
second case f clearly has a strict local extremum at x = 0, in fact a minimum if
f(x) = x4 and a maximum if f(x) = - x4.

y

Figure 9.
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c. Example. Find the local extrema of the function

f(x) = 3x5 - 5x3•

SOLUTION. Here f is differentiable for all x, and the only critical points of
f are stationary points. These are the roots of the equation

f'(x) = 15x4
- 15x2 = 15x2(x - 1)(x + 1) = 0,

namely the points x = -1, 0, 1. Calculating the second derivative, we get

/"(x) = 60x3
- 30x = 30x(2x2 - 1),

so that

/"( -1) = - 30 < 0, /,,(0) = 0, /,,(1) = 30 > O.

Therefore, by the second derivative test, f has a strict local maximum, equal to 2,
at x = -1, and a strict local minimum, equal to -2, at x = 1. Although the second
derivative test does not work at the point x = 0, it is easy to see that f has no ex-
tremum at x = O. In fact,

f'(x) = 15x2(x2 - 1) < 0

if -1 < x < 1. Therefore f is decreasing in [ -1, 1],by Sec. 3.54, and hence can
have no extremum at x = O. You should confirm all this by sketching a graph
of f(x).

PROBLEMS
1. Verify the following rule for finding the global extrema of a function f con-

tinuous in a closed interval [a, b]: Let XI> X2, ... , x. be all the points of the
open interval (a, b) at which f has local extrema. Then the largest ofthe numbers

f(a), f(Xl)' f(X2), ... , f(x.), f(b)

is the global maximum of fin [a, b], while the smallest of these numbers is the
global minimum of f in [a, b].

2. By investigating all critical points, find the local extrema, if any, of
(a) y=Jxl; (b) y=2+x-x2; (c) y=x3-2x2+3x-1.

3. Do the same for

(b) y = x + ~ in [0.01, 100];
x

y = Ix2 - 3x + 21 in [ -10,10].

1
(a) y = 2x2 - x4; (b) y = x +-;

x
4. Find the global extrema of

(a) y = x2 - 4x + 6 in [ -3,10];

(c) y =.J5 - 4x in [-1,1]; (d)
S. Show that 13x - x31 ~ 2 if Ixl ~ 2.
6. Show that the function

ax + b
y = ex + d

has no strict local extrema, regardless of the values of a, b, c, d.
*7. Find the local extrema of the function

y = xm(1 - x).,
where m and n are positive integers.
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*8. What value of c minimizes the maximum of the function f(x) = Ix2 + cl in
the interval [ -1, I]?

*9. Suppose the function

(n = 1, 2, ... )

*10.

ax + b
Y = (x - l)(x - 4)

has a local extremum, equal to -1, at the point x = 2.
show that the extremum is a maximum.
Which term of the sequence

..;n
Yn = n + 10,000

is the largest?

Find a and b, and

3.7 CONCAVITY AND INFLECTION POINTS

3.71. a. Let f be continuous in an interval I and differentiable at a point pEl,
and let Y = T(x) be the equation of the tangent to the curve Y = f(x) at the point
with abscissa p. (For brevity, we will henceforth say "at the point p" or simply
"at p," instead of "at the point with abscissa p.") Then, according to Sec. 2.52d,

Y = T(x) = f'(p)(x - p) + f(p).

Suppose that f(x) > T(x) in some deleted neighborhood of p, so that the curve
Y = f(x) lies above its tangent at p in this neighborhood, as shown in Figure lOA.
Then f is said to be concave upward at p. Similarly, suppose that f(x) < T(x) in
some deleted neighborhood of p, so that the curve y = f(x) lies below its tangent
at p in this neighborhood, as shown in Figure lOB. Then f is said to be concave
downward at p. Iff is concave upward (or downward) at every point of the interval I,
we say that f is concave upward (or downward) in I.

b. A point p is said to be an inflection point of the function f if the curve
y = f(x) lies on one side of its tangent (at p) if x < p and on the other side of its
tangent if x > p. The two ways in which this can happen are illustrated in Figures
11A and lIB. If p is an inflection point of f, we also say that f has an inflection
point at p.

IXo

y

/

=f(X)
y = T(x)

I
I
I
I
I
!

P

A
Figure 10.

o

y

p

B

y = T(x)

X
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y y

y = f(x)

~V~TI'I
y =T(x)

y = fIx)
I
I
I
I
I

a p x a xp

A B
Figure 11.

3.72. With the help of the mean value theorem, it is not hard to show (see
Prob. 11) that if f' exists and is increasing in some neighborhood of p, then f is
concave upward at p, while if f' exists and is decreasing in some neighborhood of p,
then f is concave downward at p. It can also be shown (see Prob. 12) that if /'
exists in some neighborhood of p and has a strict local extremum at p, then p is an
inflection point of f. Using these facts, we can develop a complete parallelism
between the theory of increasing (or decreasing) functions and critical points, on the
one hand, and the theory of upward (or downward) concavity and inflection points,
on the other hand, with the first derivative /' now playing the role of the function f,
and the second derivative f" now playing the role of the first derivative /'. Thus
you can easily convince yourself of the validity of the following propositions. In
every case, the proof is the exact analogue of a proof that has already been given.

(1) If f"(p) exists and is positive, then f' is increasing in some neighborhood
of p, so that f is concave upward at p. This is the analogue of the result
in Sec. 3.41a.

(2) If f"(p) exists and is negative, then f' is decreasing in some neighbor-
hood of p, so that f is concave downward at p. This is the analogue of the
result in Sec. 3.41b.

(3) If f has an iriflection point at p, then either f"(p) fails to exist or f"(p)
exists and equals zero. This is the analogue of Theorem 3.63a.

(4) Given that f" exists in a deleted neighborhood of p, suppose f"(p) either
fails to exist or equals zero, and suppose f" changes sign in going through
p. Then f has an inflection point at p. This second derivative test for an
inflection point is the analogue of the first derivative test for a local
extremum (Theorem 3.64a).

(5) If f"(p) = 0 and if the third derivative f"'(p) exists and is nonzero, then.
f has an inflection point at p. This third derivative test for an inflection
point is the analogue of the second derivative test for a local extremum
(Theorem 3.65a).

3.73. Examples

a. Find the inflection points and investigate the concavity of the function

f(x) = x4 - 2x3 + 3x - 4.
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SOLUTION. Here I" exists for all x. Therefore, by Proposition (3), the only
candidates for inflection points of f are the roots of the equation

f"(x) = 12x2 - 12x = 12x(x - 1) = 0,

namely the points x = 0 and x =' 1. By Propositions (1) and (2), f is concave up-
ward in the interval (- 00, 0), since f"(x) > 0 if x < 0, concave downward in the
interval (0,1), since f"(x) < 0 if 0 < x < 1, and concave upward in the interval
(1, (0), since f"(x) > 0 if x > 1. Therefore x = 0 and x = 1 are both inflection
points of f, by Proposition (4). This also follows from Proposition (5), since f"'(x) =
24x - 12, and hence f"'(O) = -12 # 0,1'''(1) = 12 # O.

b. Graph the function
1 4 2

f(x) = 24 x - x + 6.

SOLUTION. Since f is even, the graph of f is symmetric in the y-axis (Example
2.32d), and we need only study the behavior of f in the interval [0, (0). To find the
extrema of f, we solve the question

1 1
f'(x) = "6 x3

- 2x = "6 x(x2
- 12) = 0,

obtaining two nonnegative stationary points x = 0 and x = JIT. Since

1
f"(x) = 2 x2

- 2,

we have
1"(0) = - 2 < 0, f"(JIT) = 4 :> O.

It follows from Theorem 3.65a that f has a strict local maximum, equal to f(O) = 6,
at the point x = 0, and a strict local minimum, equal to f(JTI) = 0, at the point
x = JTI. The only point in [0, (0) which can be an inflection point of f is the

y

7

fIx) = 1... x4 - x2 + 6
24

.?
3

-5 I
x

-2 -1 0 2 3 4 5
v'i2

Figure 12.
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nonnegative solution of the equation

f"(x) = ~ x2 - 2 = 0,

namely the point x = 2. This point is actually an inflection point, by Proposition (4),
since f"(x) < 0 in [0,2) and f"(x) > 0 in (2, 00). At the same time, we note that f is
concave downward in the interval [0, 2) and concave upward in the interval (2, 00).
Moreover f'''(x) = x, and hence /,,'(2) = 2 :I O. Therefore the fact that x = 2 is
an inflection point of f also follows from Proposition (5).

The function f has no asymptotes (Sec. 2.93), since it does not become infinite
at any finite points and does not approach a finite limit as x -+ :!: 00. In fact,
f(x) -+ 00 as x -+ :!: 00. To draw an accurate graph of f, we need a few more values
of f besides f(O) = 6 and f(JT2) = O. The following three will suffice:

121, 8 2 169
f(l) = 24 ~ 5, f(2) = 3' f(4) = 3' f(5) = 24 ~ 7.

Plotting the corresponding points and connecting them by a "smooth curve," we get
the graph shown in Figure 12, after using the symmetry of the graph in the y-axis.

c. It is apparent from the previous example that we can form no clear idea of
the behavior of a function without first locating all its extrema and inflection points,
as well as examining it for possible asymptotes and testing it for parity (evenness or
oddness). Figure 13 shows what can go wrong if we try to graph a function without
doing this first. The solid curve is the "true graph" and the dashed curve is the
quite misleading result of connecting five points of the graph by a "smooth curve."

y

xo

Figure 13.

PROBLEMS

1. "The function f is concave upward at p if it has a strict local minimum at p
and concave downward at p if it has a strict local maximum at p." True or
false?

2. What does the condition f"(p) = 0 by itself tell us about concavity at p or the
presence of an inflection point at p?

3. Must a function have a local extremum between two consecutive inflection
points?

4. Find the inflection points and investigate the concavity of the function y =
2x4 - 3x2 + 2x + 2.
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5. Do the same for the function
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(1)

x3
y = x2 + 3a2'

6. For what value of c does the function y = x3 + cx2 + 1 have an inflection
point at x = I?

7. A point P = (p, f(p)) is said to be an inflection point of the curve y = f(x) if p
is an inflection point of the function f. For what values of a and b is the point
(1,3) an inflection point of the curve y = ax3 + bx2?

8. Graph the function y = (x + 1)(x - 1)2, after first investigating extrema, con-
cavity, inflectIon points, asymptotes, etc.

*9. Do the same for the function
x + 1

y = x2 + l'
*10. Show that the three inflection points of the function (1) are collinear, that is,

lie on the same straight line.
*11. Show that if f' exists and is increasing in some neighborhood of p, then f is

concave upward at p, while if f' exists and is decreasing in some neighborhood
of p, then f is concave downward at p.

*12. Show that if f' exists in some neighborhood of p and has a strict local ex-
tremum at p, then p is an inflection point of f.

*13. Suppose f and its first and second derivatives f' and I" are continuous in an
interval I. Justify the following statement: f vanishes at a point p if the sign
of f changes in passing through p, f has a local extremum at p if the sign of
f' changes in passing through p, f has an inflection point at p if the sign of 1",
and hence the concavity of f, changes in passing through p.

3.8 OPTIMIZATION PROBLEMS

A host of practical problems involve the determination of largest size, least cost,
shortest time, greatest revenue, and so on. Problems of this type ask for the "best
value" of some variable, and hence are called optimization problems. Many of them
can be solved with the help of the powerful tools developed in the last few sections.
There is no universal rule that works in all cases, and as in all "word problems,"
there is no substitute for using a little common sense early in the game before trying
to turn some computational crank. The following examples will give you a good
idea of how to go about solving optimization problems.

3.81. Example. A square box with no top is made by cutting little squares out
of the four corners of a square sheet of metal c inches on a side, and then folding
up the resulting flaps, as shown in Figure 14. What size squares should be cut out
to make the box of largest volume?

SOLUTION. Let x be the side length of each little square. Then the volume
of the box in cubic inches is just

V = V(x) = x(e - 2X)2. (1)

Moreover,

co ~ x ~ 2' (2)
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since it is impossible to cut away either overlapping squares or squares of negative
side length. Our problem is thus to determine the value of x at which the function (1)
takes its global maximum in the interval (2). Since V is differentiable for all x, the
only critical points of V, and hence, by Sec. 3.63c, the only points at which V can
have a local extremum in the whole interval (- 00,(0) are the solutions ofthe equation

dV
dx = e2 - 8ex + 12x2 = (e - 6x)(e - 2x) = 0,

namely x = e/6 and x = e/2. Moreover, since V is positive in the open interval

and vanishes at the end points x = 0 and x = e/2, the global maximum of V in the
closed interval (2), guaranteed by Theorem 3.32c and by the "physical meaning"
of the problem, must be at an interior point of (2), and hence must be a local maxi-
mum of V. But x = e/6 is the only interior point of (2) at which V can have a local
extremum, and therefore it is apparent without any further tests that V takes its
maximum in (2) at the point x = e/6. This, can be confirmed by noting that

d
2VI-d 2 = (-8e + 24x)lx:c/6 = -4e < 0,
X x:c/6

and then applying the second derivative test (Theorem 3.65a).
Thus, finally, the largest box is obtained by cutting squares of side length e/6

out of the corners of the original sheet of metal. The volume of the resulting box
equals

e (2e)2 2 3
Vlx:c/6 = 6 3 = 27 e .

3.82. Example. An island lies I miles offshore from a straight beach. Down
the beach h miles from the point nearest the island, there is a group of vacationers
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(3)(0 ~ x ~ h)

who plan to get to the island by using a beach buggy going (X mi/hr, trailing a motor-
boat which can do fJ mijhr. At what point of the beach should the vacationers
transfer from the buggy to the boat in order to get to the island in the shortest time?

SOLUTION. The geometry of the problem is shown in Figure 15, where the
vacationers start at A, the island is at C, and x is the distance between the point P
at which they launch the boat and the point B of the beach nearest the island. The
time it takes to get to the island is given by the formula

T = T(x) = IAPI + IPCI
(X fJ

1 1 1'2 2
= - (h - x) + - 'V X + [
a fJ

(the time taken equals the distance travelled divided by the speed), where the boat
leaves from the starting point A if x = h and from the point B nearest the island
if x = O. Differentiating (3) with respect to x, we get

(4)

dT _ ~( x _ k)
dx - fJ Jx2 + [2 '

where k = fJ/a. If k ~ 1, that is, if fJ ~ a, then dT/dx is negative for all x E (0, h),
and hence T is decreasing in [0, h], by Sec. 3.54. In this case, T takes its global mini-
mum in [0, h] at x = h, so that the vacationers should forget about the buggy and
go straight to the island by boat.

The same is true if k < 1, provided that

k[
xo= ~~h.,,1 - k2

In fact, if k < 1, the equation

x -k=OJx2 + [2

has the unique solution x = xo, where Xo lies outside the interval (0,11) if (4) holds.
Therefore dT/dx is again negative at every point of (0, h), since dT/dx cannot change
sign in (0, h) and dT/dx is clearly negative for small enough x. But then T is again
decreasing in [0, h]. Thus, in this case too, the vacationers should go straight to the
island by boat.

c

Bxp

r---------h----

A

Figure 15.
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However, if

kl
xo= ~<h,

vI - k
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then Xo lies in the interval (0, h). Moreover, in this case, dT/dx is negative at every
point of (0, xo) and positive at every point of (xo, h). Therefore T must have a local
minimum at xo, by the first derivative test (Theorem 3.64a). But then T takes its
global minimum in [0, h] at Xo (why?). This means that the vacationers should now
stop the buggy and launch the boat at the point with coordinate xo, as measured
from B.

3.83. Example. A monopolistic firm has a total revenue function

R(Q) = _AQ2 + BQ

(Sec. 3.2, Prob. 7) and a total cost function

C(Q) = aQ2 + bQ + c

(Sec. 3.22a), where the coefficients A, B, a, b, c are all positive constants and B > b.
The government wishes to levy an excise tax on the commodity produced by the
firm. What tax rate should the government impose on the firm's output to maximize
the tax revenue T = rQ, knowing that the firm will add the tax to its costs and
adjust its output to maximize the profit after taxes?

SOLUTION. The cost and profit after taxes are

CT(Q) = C(Q) + rQ = aQ2 + (b + r)Q + c
and

nT(Q) = R(Q) - CT(Q) = -(A + a)Q2 + (B - b - r)Q - c (5)

(Sec. 3.2, Prob. 10). Differentiating (5)with respect to Q, with r regarded as a constant,
and setting the result equal to zero, we get the equation

dnT(Q)-- = - 2(A + a)Q + (B - b - r) = 0,
dQ

whose only solution is

Since

B-b-r
Qo = 2(A + a) . (6)

it follows from the second derivative test that the output level (6) actually maximizes
the firm's profit after taxes, at the tax rate r.

Knowing that the firm will maximize its profit after taxes, the government
chooses its tax rate r to maximize the revenue

(B - b - r)r
T = rQo = 2(A + a) , (7)

calculated at the output level (6). To maximize T as a function of the tax rate r,
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which is now regarded as variable, we differentiate (7) with respect to r, obtaining

dT B - b - 2r
di = 2(A + a) .

The optimum tax rate ro is the solution of the equation dT/dr = 0, namely

B-b
ro =-2-'

By the second derivative test, ro actually maximizes the government's revenue, since

d2T 1
--- <0.

dr2 - A + a

PROBLEMS

1. Among all rectangles of a given area A, find the one with the smallest perimeter.
2. Find the right triangle of largest area, given that the sum of one leg of the

triangle and the hypotenuse is a constant c.
3. What is the largest volume of a right circular cone of slant height I?
4. What is the largest volume of a right circular cylinder inscribed in a sphere of

radius R?
5. Given two points A = (0,3) and B = (4,5), find the point P on the x-axis for

which the distance IAPI + IPBI is the smallest.
6. Find the least amount of sheet metal needed to make a cylindrical cup of a

given volume V.
7. In Example 3.82, should the vacationers ever take the buggy all the way to the

point B nearest the island?
8. The results of n measurements of an unknown quantity x are Xl' X2, ... , xn•

What value ofx minimizes the expression (x - xd2 + (x - X2)2 + ...+ (x - Xn)2?
9. Two ships, originally at distances a and b from a point P, sail toward P with

speeds a and f3 along straight line routes making an angle of 90° with each
other. At what time t is the distance between the two ships the smallest? What
is the distance d of closest approach?

10. Given a point P = (a, b) in the first quadrant, find the line through P which cuts
off the triangle of least area from the quadrant.

11. Let R(Q) be the total revenue received by a monopolistic firm from the sale of
a quantity Q of some commodity, and let C(Q) be the firm's total cost function.
The firm wants to adjust its output to maximize its profit

n(Q) = R(Q) - C(Q). (8)

Show that the profit function (8) is maximized at any output level such that
(a) Marginal revenue (MR) equals marginal cost (MC);
(b) Marginal revenue is increasing more slowly than marginal cost.

12. Suppose a monopolistic firm has a total revenue function R(Q) = 1200Q - 1OQ2
and a total cost function C(Q) = Q3 - 60Q2 + 1500Q + 1000. What output
level maximizes the firm's profit?
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*13. "Normal cost conditions" are characterized by three properties:

(a) There are certain fixed costs (the overhead);
(b) Total cost increases with output;
(c) Marginal cost is always positive; as the output increases, the

marginal cost first decreases and then increases.

Suppose a firm has a cubic total cost function

C(Q) = aQ3 + bQ2 + cQ + d.

Show that

a > 0, b < 0, c > 0, d > 0, b2 < 3ac

under normal cost conditions.
*14. For which chord BC parallel to the tangent to a circle at a point A is the area

of the triangle ABC largest?
*15. What is the largest surface area (including the top and bottom) of a right

circular cylinder inscribed in a sphere of radius R?
*16. Given a point P inside an acute angle, let L be the line segment through P

cutting off the triangle of least area from the angle. Show that P bisects the
part of L inside the angle. Show that this property also characterizes the point
P in Problem 10.

*17. According to Fermat's principle, the path taken by a ray of light which leaves
a point A and passes through a point B after being reflected by a plane mirror
is such as to minimize the time taken to traverse the whole path from A to the
mirror to B. According to the law of reflection, the angle of incidence (between
the incident ray and the perpendicular to the mirror) equals the angle of reflec-
tion (between the reflected ray and the perpendicular to the mirror). Deduce
the law of reflection from Fermat's principle.



Chapter 4

INTEGRAL
CALCULUS

4.1 THE DEFINITE INTEGRAL

The study of calculus is closely associated with the study of limits of various
kinds. So far we have encountered the limit of a function at a point, the limit of
a sequence, and the sum of an infinite series, as well as one-sided limits, infinite
limits, limits at infinity, and asymptotes. We now consider still another kind of limit,
leading to the concept of the definite integral. This kind of limit comes up time and
again in problems involving the "summation of a very large number of individually
small terms." The prototype of all such problems is the problem of finding the "area
under a curve."

4.11. The area under a curve

a. Let
y = f(x) (a ~ x ~ b)

be a function which is continuous and nonnegative in a closed interval [a, bJ. Then,
by the area under the curve y = f(x), from x = a to x = b, we mean the area A of
the plane region bounded by the curve y = f(x), the x-axis, and the lines x = a and
x = b. This can also be described as the area between the curve y = f(x) and the
x-axis, from x = a to x = b.

We can think of the region as a kind of trapezoid with three straight sides and
one curved side, unless f(a) = 0 or f(b) = 0, in which case one or both of the vertical
sides may shrink to a point. Such regions are not considered in elementary geometry.
Thus, in the process of calculating A, we must decide what is meant by A in the first
place!

b. With this in mind, we divide the interval [a, b] into a large number n of small
subintervals [Xi-t> Xi], by introducing points of subdivision Xl' X2"'" Xn-l such
that

a = Xo < Xl < X2 < ... < Xn-l < Xn = b,

where, in the interest of a uniform notation, the end points a and b of the original
interval [a, b] are assigned alternative symbols Xo and Xn, as if they were points of
subdivision too. Let

.1.x; = Xi - Xi-l (i = 1,2, ... , n)

be the length of the ith subinterval, and let A. be the maximum length of all the sub-
intervals, that is, the largest of the numbers .1.XI> .1.X2, ... , .1.xn• We denote this by
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il = max {Xl - XO, X2 - Xl, ... , Xn - Xn- d = max {.1xl, .1X2, ... ,.1xn}

(see Prob. 1). The lines X = Xo, X = Xl, X = X2, ... , X = Xn-l' X = Xn divide the
region into n narrow strips, as shown in Figure 1. Being continuous, f(x) does not
change "much" in the interval [Xi-l, x;], and hence it seems like a good approximation
to regard f(x) as having the constant value f(ei) in [Xi-l, x;], where ei is an arbitrary
point of [Xi-l, x;]. This is equivalent to replacing the strips, with curved tops, by the
shaded rectangles shown in the figure. The sum of the areas of these rectangles is
given by

n n
I f(ei)(Xi - Xi- d = I f(ei) .1Xi>
i= I j= I

(1)

where we use the summation notation introduced in Sec. 2.96a. It seems reasonable
to regard (1) as a good approximation to the area A of the region, where the ap-
proximation gets "better and better" as the bases of the rectangles all get "smaller
and smaller," that is, as the number il, the largest of these bases, gets "smaller and
smaller." This suggests that we define A as the limit

n n

A = lim I f(ei)(Xi - Xi-I) = lim I f(ej) .1Xh
)."0 ,= I )."0 i= I

and this is exactly what we will do.

(2)

4.12. a. These considerations lead naturally to the following definition: Given
a function f(x) defined in a closed interval [a, b], let Xl' X2, ... , Xn-l be points of
subdivision of [a, b] such that

a = Xo < Xl < X2 < ... < Xn-l < Xn = b,

and let ei be an arbitrary point of the subinterval [Xj-i> Xi], oflength .1x, = XI - XI-l'
Suppose the sum

n n

(1 = L f(el)(Xi - X'-l) = L f(e,) .1Xi
i= I i= 1

(3)
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approaches zero. Then the limit is called the definite integral of f(x) from a to b,
denoted by

S: f(x) dx, (4)

and the function f(x) is said to be integrable in [a, b], or oyer [a, b].
It should be noted that here we do not require the function f(x) to be continuous

in [a, b], and in fact, the integral (4) exists even in cases where f(x) is discontinuous.
This matter will be discussed further in Sec. 4.14.

b. The quantities (J and A depend, of course, on the choice of the points of
subdivision

(5)

To emphasize this, we can write (J = (J(X) and A = A(X), where X is the set of points
(5). Loosely speaking, X is a "partition" of the interval [a, b], and the quantity
A = A(X) is a measure of the "fineness" of the partition. What does it mean to say
that (J approaches the limit (4) as A ...• O? Just this: The quantity

(J(X) - Lb f(x) dx

is "arbitrarily near" zero for all X such that A(X) is "sufficiently small," regardless of
the choice of the points

(i = 1,2, ... , n).

Or in "e,o language," which is particularly appropriate here, given any e > 0, we
can find a number 0 > 0 such that

I(J(X) - Lb f(x) dxl < e

whenever 0 < A(X) < 0.
c. This is a different kind oflimit than those considered so far, but it is handled

in the same way. For example, let (J be the sum (3) and let c be an arbitrary constant.
Then

n

C(J = L Cf(~i) AXi,
i= 1

by elementary algebra, and

lim C(J = C lim (J,
,t ...•o ,t ...•o

by the usual rule for the limit of a product, provided that the limit on the right exists.
Therefore S: cf(x) dx = C Lb f(x) dx,

provided that f(x) is integrable in [a, b].
Similarly, let

n n

, = L g(O(Xi - Xi-I) = L g(~i) llx;,
i= 1 i= 1

(6)
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when>:g(x) is another function defined in [a, b]. Then
n

(J + r = L [f(~i) + g(~i)] L1x;,
i=l

by elementary algebra, and

lim «(J + r) = lim (J + lim r,
A~O A~O A~O

by the usual rule for the limit of a sum, provided that both limits on the right exist.
Therefore

Lb [f(x) + g(x)] dx = Lb f(x) dx + S: g(x) dx, (7)

provided that both functions f(x) and g(x) are integrable in [a, b].
By repeated application of (6) and (7), we arrive at the more general formula

S: [Cdl(X) + Cd2(X) + '" + cnfn(x)] dx

, = clf ft(x) dx + C2Lb f2(X) dx + ... + CnLb f.(x) dx, (8)

where fl(X), f2(X), ... , fn(x) are functions which are all integrable in [a, b], and
CI, C2, ••• , Cn are arbitrary constants. For example,

Lb [Cdl(X) + Cd2(X) + Cd3(X)] dx = Lb [Cdl(X) + Cd2(X)] dx + f Cd3(X) dx

= Lb Cdl(X) dx + f Cd2(X) dx + Lb Cd3(X) dx

= ci S: fl(X) dx + C2 f f2(X) dx + C3 Lb fix) dx,

and similarly for more than three terms. Formula (8) is, of course, the exact analogue
for definite integrals of formula (7), p. 119, for indefinite integrals.

d. Note the distinction between the definite integral (4), which is a number,
and the indefinite integral

f f(x) dx,

which is a function. A definite integral always has two numbers attached to the
integral sign, like the numbers a and b in (4), called the lower limit of integration and
the upper limit of integration, respectively, where in these expressions, the word "limit"
is used in the loose, colloquial sense, meaning "boundary" or "extent," and not in the
precise technical sense in which it is used elsewhere in this book. The numbers a
and b are, of course, the end points of the in terval [a, b], called the interval of integra-
tion. Otherwise, the terminology is the same for both definite and indefinite integrals.
Thus the function f(x) in (4) is again called the integrand, as in Sec. 3.53a, the opera-
tion leading from f(x) to the number (4) is called (definite) integration, with respect
to x, and the argument x is called the variable of integration. Since definite integra-
tion is an operation producing a number from a given function f(x), the symbol x
is a "dummy variable," in the sense that it can be replaced by any other symbol
without changing the meaning of (4). For example,

f f(x) dx = f f(t) dt = f f(O) dO).

The situation is exactly the same as for a dummy index of summation (Sec. 2.96a).
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Things are different for indefinite integration, since our convention is to give the
indefinite integral, which is an antiderivative, the same argum~nt as the integrand.
Thus

and in this sense
f 1 2

X dx ="2x + C, f t dt = ~ t2 + c.

f x dx #- f t dt.

4.13. Examples

a. Comparing Sees. 4.11b and 4.12a, we find that the area under the curve
y = f(x) from a to b is given by the formula

A=tfl~~ ~
More generally, let f(x) and g(x) be two functions defined and continuous in the same
interval [a, b], and suppose f(x) ~ g(x) for every x E [a, b], as shown in Figure 2.
Then how do we define the area A of the plane region DCEF bounded by the lines
x = a, x = b and the curves y = f(x), y = g(x)? Clearly, if the precise definition
of area is to be compatible with the everyday meaning of area, we must insist that
area be "additive" in the following sense: The area of a figure $ made up of two
other figures $1 and $2, which have no points in common except possibly parts of
their boundaries, must equal the sum of the separate areas Of$l and $2. As applied
to Figure 2, this means that

(Area of abCD) + (Area of DCEF) = Area of abEF,

and therefore

A = Area of DCEF = (Area of abEF) - (Area of abCD).

Since

Area of abEF = fob f(x) dx,

y

Area of abCD = fob g(x) dx,

F

o a

y = g(x)

x

Figure 2.
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it follows that

A = f: f(x) dx - f g(x) dx = f [f(x) - g(x)] dx. (10)

Note that if g(x) == 0, then the "lower curve" is just the x-axis, and (10) reduces to
formula (9) for the area under the curve y = f(x).

b. Evaluate

Lb dx.
SOLUTION. Here we are integrating the constant function f(x) == 1. Thus

lb lb n n
dx = 1. dx = lim I f(ei)(Xi - Xi-I) = lim I (Xi - Xi-I),

a a ;'-0 i= I ;'-0 i= I
since f(e;) = 1 for each el' But
n

I (Xi- Xi-I) =(XI - Xo)+ (XZ - Xl) + (X3 - XZ) + ...+ (Xn-I - Xn-Z) + (Xn - Xn- d
i= I

= -XO + (Xl - Xl) + (XZ - XZ) + ...+ (Xn-l - Xn-l) + Xm

where all the terms in the sum on the right vanish except the first and the last, leaving

n

I (Xi - Xi-I) = Xn - Xo = b - a.
i= I .

Therefore

fb dx = lim f (Xi - Xi-I) = lim (b - a),Ja ;'-0 i= I ;'-0

so that, finally,

fdx=b-a.

c. Evaluate

SOLUTION. Here the integrand is f(x) = x. Therefore

n n

fb X dx = lim I f(ei)(Xi - XI-I) = lim I ei(Xi - Xi- d.Ja ;'-0 i= I ;'-0 1=I

Suppose we choose ei to be the midpoint of the interval [Xi_ I, X;], so that

(Sec. 1.5, Prob. 9). Then

lb 1 n

X dx = lim -2 I (Xi+ Xi- d(Xi - Xi-I)
a ;'-0 i= I

= ~ lim f (xf - Xf-l) = -2
1

lim (x; - x~) = -2
1

lim (bZ
- aZ

),
2 ;'-0 i= I ;'-0 ;'-0

(11)
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(12)

since the sum again "telescopes," reducing to simply x~ - x~. Thus, finally,

fb 1Ja x dx = "2 (b2 - a2).

In Sec. 4.24 we will establish a general technique for evaluating definite integrals,
which will allow us to completely bypass "brute force calculations" like those just
made in deriving formulas (11) and (12).

4.14. We now come to a crucial question: Which functions defined in a closed
interval [a, b] are integrable in [a, b]? In other words, if we take a function f(x)
defined in [a, b] and form the sum (3), when does the sum approach a finite limit as
A. ...• O? The answer is well beyond the scope of this book, and cannot even be ex-
pressed in the language of elementary calculus. However, the fact that we can't
describe the largest set of integrable functions shouldn't bother us very much, since
the following key proposition presents us with a huge set of integrable functions:
If f(x) is continuous in [a, b], then f(x) is integrable in [a, b]. The proof of this propo-
sition is not particularly difficult, but it does require a deeper study of continuous
functions than it would be profitable to pursue here.

The importance of continuity in calculus again stands revealed. Recall some of
the other nice properties of continuous functions, presented in Sec. 3.3. It should
be noted that there are integrable functions which are not continuous. An example
of such a function is given in Problem 10. With a little ingenuity, we can also con-
struct a function which fails to be integrable (see Prob. 11).

PROBLEMS

1. Given a set A, all of whose elements are numbers, suppose A contains a largest
element, that is, an element M such that x :s;; M for all x E A. Then M is called
the maximum of A, denoted by max A. Find max A if
(a) A = {0,1,2,!,(J"2)2}; (b) A = {x:x3 - 2x2 + X = O};
(c) A = {x: 0 < x < I}.

2. Let f be continuous in [a, b]. What is the number max {f(x): a :s;; x :s;; b}?
3. As in Sec. 4.12a, let A. = max {Axl>Ax2, ... , Axn}. Does n ...• 00 imply A. ...• O?

Does A. ...• 0 imply n ...• oo?
4. What is the smallest value of A. = max {Axl>Ax2, ••• , Axn}for all choices ofthe

points of subdivision Xl> X2, ••• , Xn-l? Does A. have a largest value?
5. Show that formula (9) leads to the correct expressions for the area of a rectangle

and for the area of a right triangle.
6. Test formula (10) by using it to calculate the area of the trapezoid bounded by

the lines x = 2, x = 4, y = 1 and y = x.
7. Can negative area be defined in a meaningful way?
8. How can we tell at once that the function f(x) = l/x is integrable in every

closed interval that does not contain the point x = O?
*9. Find max A if A = {a, a2, a3, ••• } and 0 :s;; a :s;; 1. What happens if a > I? If

a is negative?
* 10. The function

f(x) = {I ~f x = 0,
o If X:F 0,

is discontinuous at x = O. Verify that f(x) is integrable in [ -1,1].
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*11. Let

f(x) = { 1 ~f x ~s~ati~nal,
- 1 If x IS IrratIOnal.

Show that
(a) f(x) is discontinuous at every point c;
(b) f(x) fails to be integrable in every interval [a, b].

4.2 PROPERTIES OF DEFINITE INTEGRALS

4.21. First we consider what happens when the interval of integration is "split
up."

a. THEOREM. Iff is continuous in [a, b] and if c is an interior point of [a, b],
then

f f(x) dx = l' f(x) dx + r f(x) dx (a < c < b). (1)

Proof. As before, we divide the interval [a, b] into a large number of small
subintervals, by introducing points of subdivision, but this time we insist that one
of the points of subdivision be the fixed point c. In other words, we now choose
points of subdivision Xi (i = 1, ... , n - 1) such that

a = Xo < Xl < ... < xm-1 < xm = C < xm+1 < ... < x.-1 < X. = b,

where the subscript m depends, of course, on the number of points Xi which are less
than c. Every such "partition" of [a, b] automatically gives rise to a partition of the
interval [a, c], made up of the points Xl' ••• , xm-1, and a partition of the interval
[c, b], made up of the points Xm + 1, ... , X. _ l' Correspondingly, the sum

•
a = I f(~;) !iXi,

i= 1

used to define the integral of f from a to b, can be written as

a = a' + a",

in terms of the sums
m

a' = I f(~i) !ix;,
i= 1

•
a" = I f(~i) !ix;,

i=m+ 1

needed to define the integral of f from a to c and the integral of f from c to b. (Here
!iXi and ~i have the same meaning as in Sec. 4.12a.)

Now let

},= max {!ixb ... , !ix.},
A' = max {!ix1, ••• , !ixm},

A" = max {!iXm+l"'" !ix.}.

Then clearly A -+ 0 implies A' -+ 0 and A" -+ 0, so that

fb f(x) dx = lim a = lim (a' + a") = li~ a' + lim a"Ja ),-+0 ),-+0 ),-+0 ),-+0

= lim a' + lim a" = fe f(x) dx + fb f(x) dx,
;:-+0 ;:'-+0 Ja Jc
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(2)

where the existence of all three integrals follows from the assumption that f is con-
tinuous in [a, b], and hence in [a, c] and [c, b] as well. 0

b. So far, in writing the integral

S: f(x) dx,

it has been assumed that a < b. We now allow the case a ~ b, setting

Lb f(x) dx = - Sba f(x) dx,

by definition. Suppose b = a in (2). Then

La f(x) dx = - La f(x) dx,

which implies

La f(x) dx = O. (3)

The merit of the definition (2) is shown by the following extension of the pre-
ceding result:

c. THEOREM. Iff is continuous in an interval containing the points a, band c, then

Jab f(x) dx = S: f(x) dx + rf(x) dx (a, b, c arbitrary). (4)

Proof. Formula (4) is an immediate consequence of (2) and (3) if two or three
of the points a, band c coincide. Moreover, (4) reduces to (1) if a < c < b. The
other cases can be dealt with by using (2) together with (1). For example, if c < b < a,
then, by (1),

f f(x) dx = r f(x) dx + La f(x) dx,

and hence, by (2),

- fa' f(x) dx = r f(x) dx - f f(x) dx,

which implies

Lb f(x) dx = LC f(x) dx + f f(x) dx.

The remaining cases a < b < c, b < a < c, b < c < a and c < a < b are treated
similarly (give the details). 0

4.22. The mean value theorem for integrals

The mean value theorem of Sec. 3.43a expresses the difference between the
values of a differentiable function at two points a and b in terms of the derivative
of the function at some point of [a, b], in fact, at an interior point of [a, b]. There is
a similar proposition expressing the definite integral from a to b of a continuous
function in terms of the value of the function at some point of [a, b] :

a. THEOREM (Mean value theorem for integrals). Iff is continuous in [a, b], then
there is a point c E [a, b] such that

Jab f(x) dx = f(c)(b - a). (5)
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Proof. As in Sec. 3.32, let M be the maximum and m the minimum off in [a, b],
taken at points p and q, respectively, and let

n

(J = I f(~i) ~Xi
i; I

be the sum involved in the definition of the integral in (5). Clearly

m ~Xi ~ f(~i) ~Xi ~ M ~Xi,

and therefore
n n
I m ~i ~ (J ~ I M ~i>
i; I i; I

or

m(b - a) ~ (J ~ M(b - a),

since
n

I ~Xi = (Xl - Xo) + (X2 - xd + ... + (Xn - Xn-l) = Xn - Xo = b - a.
i; I

Taking the limit of (6) as A -+ 0, we get

m(b - a) ~ f f(x) dx ~ M(b - a),

with the help of Problem 13, or equivalently

1 ibm ~ -b-- f(x) dx ~ M.
- a "

Thus the quantity

1 ibh = --b--- f(x)dx
- a "

(6)

(7)

(8)

is a number belonging to the interval [m, M]' It follows from the intermediate value
theorem (Sec. 3.33b) that there is a point e, either equal to p or q if h = M or h = m,
or lying between p and q if m < h < M, but in any event certainly in the interval
[a, b], such that

f(e) = h. (9)

Comparing (8) and (9), we immediately obtain (5). D
Note that formula (5) remains true for b < a, provided that f is continuous in

[b, a]. In fact, we then have

f f(x) dx = - fb" f(x) dx = - f(e)(a - b) = f(e)(b - a).

b. The mean value theorem for integrals has a simple geometrical interpreta-
tion. Suppose f(x) ~ 0, as in Figure 3. Then, by Example 4.13a, the area of the
region abeD bounded by the curve y = f(x), the x-axis and the lines X = a and
x = b is given by the integral

f: f(x) dx.
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According to (5), there is a point c e [a, b] such that the rectangle with base b - a
and altitude h = f(c) has the same area as abCD. How this comes about is shown
in the figure, where the dark parts of abCD are "compensated" by the shaded parts
of the rectangle abEF. The number h, equal to

1 fb
b _ a Ja f(x) dx,

is called the mean value or average of the function f(x) over the interval [a, b].

4.23. According to Sec. 4.14, every continuous function has a definite integral.
We now use the mean value theorem for integrals to prove that every continuous
function has an antiderivative and hence an indefinite integral.

a. THEOREM. Let f be continuous in an interval I, and let

<I>(x)= fx f(t) dt,
Jxo

(10)

where xo is a fixed point of I and x is a variable point of I. Then <I>is an antiderivative
off in I.

Proof. There is a slight technicality here, namely, if I has end points a and b,
then <I>'(a)is defined by the right-hand limit

<I>'(a)= lim <I>(a+ dx) - <I>(a)
Ax-O+ dx

if a e I, while <I>'(b)is defined by the left-hand limit

<I>'(b)= lim <I>(b+ dx) - <I>(b)
Ax-O- dx

if bel. This is simply because x must belong to I, and hence can approach a only
from the right and b only from the left.

To get on with the proof, we first note that the existence of the integral (10)
follows from the continuity of f, by Sec. 4.14. Suppose x and x + dx both belong
to I. Then

fx+Ax . fx fX+4x
<I>(x + dx) = Jxo f(t) dt = Jxo f(t) dt + Jx f(t) dt,
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by Theorem 4.21c, and hence
(x+tu

<I>(x+ Ax) - <I>(x)= Jx f(t) dt. (11)

Applying the mean value theorem for integrals to the right side of (11), which is
independent of the fixed point Xo, we get

<I>(x+ Ax) - <I>(x)= f(c)(x + Ax - x) = f(c) Ax, (12)

where x :::;;c :::;;x + Ax or x + Ax :::;;c :::;;x, depending on whether Ax is positive
or negative. But then c --+ x as Ax --+ 0, and therefore f(c) --+ f(x) as Ax --+ 0, by the
continuity of f. It follows that

<I>'(x)= lim <I>(x+ Ax) - <I>(x)= lim f(c) Ax = lim f(c) = f(x),
4X"'O Ax 4X"'O Ax 4x"'O

that is, <I>is an antiderivative of fin 1. 0
b. The content of this key theorem can be written concisely as

d f,x-d f(t) dt = f(x).x Xo

Notice how the presence of the letter x in the upper limit of integration forces us to
use another letter for the variable of integration. Here we use t, but any letter other
than x would do just as well. The theorem has a simple geometrical interpretation:
Suppose 1 = [a, b] and f(t) ~ 0, as in Figure 4, and let Xo = a. Then <I>(x)is the
shaded area under the curve y = f(t) from t = a to t = x, which varies from

fa" f(t) dt = 0

to

f: f(t) dt

as x varies from a to b, and the rate of change of this area with respect to x at a given
point of [a, b] equals the "height" of the curve at the given point.

c. COROLLARY. If f is continuous in an interval 1, then F has an indefinite
integral in 1.

Proof. Since the function (10) is an antiderivative of f in 1,we have

f f(x) dx = Ix: f(t) dt + C,

where C is an arbitrary constant. 0

y

o a

Figure 4.

x b
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(13)

4.24. The fundamental theorem of calculus.

The following key theorem reveals the connection between differential and inte-
gral calculus. At the same time, it gives us a powerful tool for evaluating definite
integrals.

a. THEOREM(Fundamental theorem of calculus). If f is continuous in [a, bJ and
if F is any antiderivative off in [a, bJ, then

f f(x) dx = F(b) - F(a).

Proof. By the preceding theorem, the function

~(x) = f f(t) dt

is an antiderivative of f in [a, b]. Let F be any other antiderivative of f in [a, b].
Then, by Theorem 3.52b,

~(x) = F(x) + C,

where C is a constant. To determine C, we note that

F(a) + C = ~(a) = f: f(t) dt = 0,

which implies

C = -F(a).

Therefore
~(x) = F(x) + C = F(x) - F(a).

Changing the dummy variable of integration from t to x, we then get

f: f(x) dx = ~(b) = F(b) - F(a). D

Note that formula (13) remains true for b < a, provided that f is continuous
in [b, a]' In fact, we then have

f.b f(x) dx = - fbQ

f(x) dx = - [F(a) - F(b)] = F(b) - F(a).

b. A little extra notation comes in handy here. Given any function <p(x) de-
fined for x = a and x = b, let

<p(x)I: or [<p(X)J:
denote the difference <p(b) - <p(a). With this notation, we can write (13) compactly as

f.b f(x) dx = F(x) I:. (14)

Moreover, since

F(x) I: = [F(X) + CJ: = [f f(x) dx J:,
we can also write (14) as

f f(x) dx = [f f(x) dxI



150 Integral Calculus Chap. 4

This formula shows the connection between the definite and indefinite integrals of
I(x) very explicitly.

4.25. Examples

8. Evaluate

f.b xr dx.

SOLUTION. It follows from (14) and formula (5), p. 119, that

f.b Xr+l Ib br+1 - ar+1
Xr dx = -- = -----

a r+la r+l (15)

if r # -1. Choosing r = 0 and r = 1 in (15), we immediately get the results of
Examples 4.13b and 4.l3c. The interval [a, b] (or [b, a] if b < a) must not contain
the point x = 0 if r is negative, since otherwise xr will fail to be continuous in [a, b].

b. Suppose

MC(Q) = 3Q2 - 100Q + 1200

is the marginal cost of producing a commodity at output level Q. Find the total cost
function C(Q) if the overhead is 1000 money units. Express the cost (exclusive of
overhead) of producing the second 10 units of the commodity as an integral, and
evaluate it. Find the average cost (inclusive of overhead) of producing 20 units of
the commodity.

SOLUTION. According to Sec. 3.22a,

MC(Q) = d~~Q).

Therefore

C(Q) = f MC(Q) dQ = f (3Q2 - 100Q + 1200) dQ = Q3 - 50Q2 + 120QQ + k,

where k is a constant of integration. But k = C(O) = 1000, and hence

C(Q) = Q3 - 50Q2 + 1200Q + 1000.

The cost of producing the second 10 units is

f20 MC(Q) dQ = C(Q)i
20 = C(20) - C(10) = 4000,JIO 10

while the average cost of producing 20 units is

AC(20) = C(20) = 13000 = 650
20 20 .

PROBLEMS

1. Verify that

fl X3 dx = fO x3 dx + fl x3 dx
-I -I Jo

by direct calculation.
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2. Evaluate
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(d) s: 11 - xl dx.
3. Verify that

n + 1 fl .d = {I if n is even,
2 - 1 X X 0 if n is odd.

4. Find the definite integral from 0 to 2 of the function

f(x) = {x
3

~f 0 ~ x ~ 1,
2 - x If 1 < x ~ 2.

5. Find the area A between the curves y = JX and y = x2 (see Figure 5). Why is
the part of the curve y = x2 lying in the first quadrant the reflection of the
curve y = JX in the line y = x?

6. Find the area between the line x + y = 2 and the curve y = x2•
7. According to formula (5),

f f(x) dx = 6f(c),

where C E [1,7]. Find c if f(x) = x.
8. Verify that the average of the function f(x) = x over the interval [a, b] is just

the midpoint of the interval.
9. Consider a particle with equation of motion s = s(t). We now have two defini-

tions of the average velocity of the particle over the interval [a, b], namely
s(b) - s(a)

Va. = b - a

y

y = x2

y= vx

x

Figure 5.
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(Sec. 3.12a) and

1 ibvav = -b-- v(t) dt
- a a

Chap. 4

(Sec. 4.22b), where v = v(t) is the particle's instantaneous velocity. Show that
the two definitions are equivalent.

10. Is it true that

f dx = IX dt + c?
x 1 t

11. Why is the function <I>(x) defined by (10) continuous in the interval I?
12. Show that if 0"(,1.) ~ 0 and 0"(,1.) -+ 0"0 as ,1.-+ 0, then 0"0 ~ o.
13. Show that if A ~ 0"(,1.) ~ Band O"(..t) -+ 0"0 as ,1.-+ 0, then A ~ 0"0 ~ B.
14. Evaluate

d fb
(a) dx Ja I(x) dx;

d fb
(b) da Ja I(x) dx;

d fb
(c) db Ja I(x) dx.

15. Show that if I is continuous in [a, b] and if A ~ I(x) ~ B for every x E [a, b],
then

A(b - a) ~ f: I(x) dx ~ B(b - a).

16. Show that if I is continuous and nonnegative in [a, b], that is, nonnegative at
every point x E [a, b], then

f I(x) dx ~ o.
17. Show that if 11 and 12 are continuous in [a,b] and if 11(X) ~ 12(X) for every

x E [a, b], then

f 11(x) dx ~ Jab 12(X) dx.

*18. Show that if I is continuous and nonnegative in [a, b], and if I is nonzero at
some point C E [a, b], then

f I(x)dx > O.

*19. Let I be continuous and nonnegative in [a, b], and suppose that

f I(x) dx = o.
Show that I has the constant value 0 in [a, b].

*20. Let 11 and 12 be the same as in Problem 17, and suppose that in addition 11 ¥= 12
in [a, b], that is, suppose that I1(c) i= I2(c) for at least one point C E [a, b].
Show that

*21. Verify that

1 f2 dx 1
(; < Jo 10 + x < s.
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*22. Show that if f is continuous in [a, b], then

IS: f(x) dxl ~ s: If(x)1 dx.

The Logarithm 153

*23. Show that we can always choose the point c in formula (5) to be an interior
point of [a, b], that is, a point of (a, b).

4.3 THE LOGARITHM

4.31. One of the most important functions in mathematics is the natural
logarithm, or simply the logarithm, denoted by In x and defined for all positive x
by the formula

In x = fX dt.
1 t

(1)

The expression on the right is just the definite integral from the fixed point t = 1 to
the variable point t = x of the function l/t. In geometrical terms, if x > 1, then In x
is the area under the curve y = l/t from t = 1 to t = x, as in Figure 6A. !f0 < x < 1,
then, since

In x is the negative of the area under the curve y = l/t from t = x to t = 1, as in
Figure 6B. Thus In x > 0 if x > 1, while In x < 0 if 0 < x < 1. Moreover,

since

y

In 1 = 0,

fi dt = O.
1 t

v

(2)

A
Figure 6.

o

y=t

B

t
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4.32. It follows from Theorem 4.23a that the function In x is differentiable in
the interval (0, oc), with derivative

d 1
-Inx =-.
dx x (3)

In particular, this shows that In x is continuous in (0, (0), for the reason given in
Sec. 2.66. Moreover, the function In x is increasing in (0, (0). In fact, suppose that
o < Xl < X2 < 00. Then .

I l
X2 dt. lXI dt iX2 dt I IX2 dtn X2 = - = - + - = n Xl + -.
I tIt Xl t Xl t

Applying the mean value theorem for integrals to the last integral on the right, we get

where Xl ~ c ~ x2, so that

x2 - Xl
In X2 - In Xl = --- > O.

c

In other words, Xl < X2 implies In Xl < In X2, so that In X is increasing, as claimed.

4.33. The next property of In X is so important that it deserves a theorem of
its own:

a. THEOREM. Let a and b be arbitrary positive numbers. Then

In (ab) = In a + In b. (4)

Proof. Using the chain rule to differentiate the composite function In (ax), we
find that

dId a 1
-In (ax) = --(ax) = - =-.
dx ax dx ax X

Therefore both functions In (ax) and In X have the same derivative l/x. In other
words, In (ax) and In X are both antiderivatives of l/x. It fol1ows from Theorem 3.52b
that

In (ax) = In X + C,

where C is a constant. To determine C, we set X = 1 in (5), obtaining

Ina=lnl +C=C,

with the help of (2). Therefore (5) becomes

In (ax) = In X + In a.

Setting X = b in this formula, we immediately get (4). 0
b. In particula'r, (4) implies

In (a2) = In a + In a = 2 In a,
In (a3) = In (a2) + In a = 2 In a + In a = 3 In a,

and, more generally,

In (an) = n In a,

(5)

(6)
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where, as always,

a" = a . a ... a.
'-v----'

n factors

It also follows from (2) and (4) that

In a + In ~ = In ( a . ~) = In 1 = 0,

so that

1
In - = -In a.

a

Therefore
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(7)

In G) = In ( a . D = In a + In i = In a - In b.

Note that (6) holds for every integer, positive, negative or zero, if we make the usual
definitions

_" 1
a =.'a

In fact,

1
In (a-") = In- = -In (a") = -n In a,a" .

by (6) and (7), while

In aO = In 1 = 0 = 0 . In a,

by (2).
c. Choosing a = 2, say, in formula (6), we get

In (2") = n In 2,

where In 2 > O. Given any positive number M, no matter how large, let n be any
integer greater than MjIn 2. Then

In x > In (2") = n In 2 > M

whenever x > 2", since In x is increasing. This means that

lim In x = 00

(Sec.2.91b). Moreover,

lim In x = - 00,
x-o+

since, by Sec. 2.91c,

lim In x = lim In! = -lim In t =
x-O+ t-CX) t t-CX)

where we use (7) and (8).

-00,

(8)

(9)
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According to (8) and (9), In x takes "arbitrarily large" values of both signs. Since
In x is continuous, it follows from the intermediate value theorem (Sec. 3.33b) that
In x takes every value. In other words, the range of the function In x is the whole
interval ( - 00, 00).

4.34. Let e be the number such that

In e = 1,
or equivalently

(10)

so that the area under the curve y = 1ft from t = 1 to t = e is precisely 1. The
number e, called the base of the natural logarithms, is a constant of great importance
in calculus and its applications. It turns out that e is irrational and equals

e = 2.7182818284 ...

As we will see in Sec. 4.51a,

(11)

that is, e is the limit of the sequence

4.35. Figure 7 shows the graph of the function y = In x. It is apparent from
the figure that In x is increasing in (0, 00), has the range (- 00, 00), and satisfies
formulas (2) and (10). Note also that In x is a one-to-one function, like every increasing
function (Sec. 2.3, Prob. 15), and has the y-axis as its only asymptote. Moreover,
In x is concave downward in the whole interval (0, 00), by Sec. 3.72, Proposition (2),

v

-1

x

Figure 7.
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since

for every x E (0, (0).

d2 d 1 1
-In x = - - = -- < 0
dx2 dx X x2
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4.36. The function loga x
a. We now introduce the function loga x, where x is any positive number and

a is positive but different from 1. This function, called the logarithm to the base a,
is defined by the formula

Inx
logax = -I -,na

(12)

In a
lo~a = - = 1In a '

and has properties very similar to those of the function In x, to which it reduces for
a = e. For example, it follows at once from (12) that

In 1
loga 1 = -I - = 0,na

1 1 1 In x
log - = -In - = -- = -log xax Ina x Ina a'

In (xy) In x + In y
lo~ (xy) = -1-- = I = lo~ x + lo~ y,nan a

with the help of (2), (4) and (7). For a = 10, we get the common logarithm log,o x
of elementary mathematics, usually denoted by log x without the subscript 10.

b. If a and b are two positive numbers different from 1, then

10 x _ In x = In b In x
~ -Ina Inalnb'

so that

loga x = loga b . 10gbx.

Setting x = a in (13), we find that

1 = loga b . 10gba,

or equivalently

1
lo~b = -I -.

ogb a

(13)

(14)

In particular, choosing b = e in (14), we get

1 1
loga e = -I - = -I -. (15)

oge a n a

c. The derivative of the function lo~ x is easily calculated. In fact,

d d In xii
-Io~x = -- = -- = -Io~e
dx dx In a x In a x '

with the help of (15).



158 Integral Calculus

PROBLEMS

Chap. 4

1. Why can't the integral defining In x be evaluated by using formula (15), p. ISO?
2. Are the functi<?1!s!n (x2)-and 2 In x identical?
3. Find the domain of

(a) In (JX=""4 + ~); (b) In (In x); (c) In (In (In x))).
4. Differentiate

(a) In (x3 - 2x + 5); (b) x In x; (c) (In X)3; (d) In (In x).
5. Differentiate

(a) In 11+ x;
-x

1 + x2
(b) In-1--2;-x

(c) In)1 + x.
1 - x'

(d) In (x + J1+X2)).
6. According to the mean value theorem (Sec. 3.43a),

/(2) - /(1) = f'(e),

where 1 < e < 2. Find e if /(x) = In x.
7. Show that the tangent to the curve y = In x at the point e goes through the

origin.
8. What is the fourth derivative of the function y = x2 In x?
9. Verify that

f In x dx = x In x - x + C.

10. Find the area of the region bounded by the x-axis, the line x = e and the curve
y = In x.

11. In which intervals is the function x2 - In (x2) increasing? Decreasing?
12. Where does the function x - In x have its global minimum in (0, oo)? Does it

have a maximum in (0, oo)?
13. . Find the inflection points and investigate the concavity of the function

In (1 + x2).
*14. Find the domain of

(a) .Jloga x; (b) 10glO(1 - loglo (x2 - 5x + 16)).
*15. Sho~ .that

if a > 1, while

lim logo x = 00,
x-oo

lim logo x = - 00,

lim logo x = - 00
x-+O+

lim logo x = 00
x-+O +

ifO<a<l.
*16. Verify that the function In (x + .JI"+X2) is odd.
*17. Use the mean value theorem to verify that

b-a b b-a
--<In-<--

b a a

if 0 < a < b.
*18. Show that
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4.4 THE EXPONENTIAL

4.41. 8. The logarithm function

y = In x = IX dt,
1 t

The Exponential 159

defined in the preceding section, has domain (0, (0) and range ( - 00, (0). Moreover,
it is increasing, one-to-one and continuous in the whole interval (0,00), and hence
in every closed subinterval [a, bJ c (0, (0). Therefore, by the proposition cited in
Sec. 2.81c, the inverse function

x = In-I y (1)

is increasing and continuous in the interval [In a, In b]. But a = In a ~ - 00 as
a ~ 0+, while [3 = In b ~ 00 as b ~ 00, by Sec. 4.33c. Therefore the function (1) is
increasing and continuous in every closed subinterval [a, [3J c (- 00, (0), and hence
in the whole interval ( - 00, (0).

b. In studying the function (1), it is natural to preserve the custom of denoting
the independent variable by x and the dependent variable by y. Thus we now write

y = In-I x,

instead of (1). This function, which is one of the most important in mathematics,
deserves a name and notation of its own. It is called the exponential to the base e,
or simply the exponential, and is denoted by

y = exp x.

Another, even more common notation for the exponential will be introduced in a
moment. The function exp x is defined and positive for all x. This follows from the
fact that the range of exp x is just the domain of In x, namely the interval (0,00).

c. Being the inverse of the function In x, the exponential satisfies the formulas

exp (In x) == x, In (exp x) == x. (2)

To see this, we use the formulas (3), p. 43, changing y to x in the second formula,
and writing In for f and exp for f - I. It follows from the formulas

In 1 = 0, . In e = 1

that
exp 0 = 1

and

exp 1 = e,

where e is the number introduced in Sec. 4.34.

(3)

(4)

4.42. The following theorem expresses one of the key properties of the ex-
ponential:

a. THEOREM. Let x and y be arbitrary real numbers. Then

exp (x + y) = (exp x)(exp y). (5)

Proof. Let a = exp x, b = exp y, so that x = In a, y = In b. Then

x + y = In a + In b = In (ab),
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by Theorem 4.33a, and hence

exp (x + y) = ab = (exp x)(exp y). 0
b. In particular, (4) and (5) together imply

exp (2) = (exp 1)(exp 1) = e' e = e2,
exp (3) = (exp 2)(exp 1) = e. e . e = e3,

and, more generally,

exp(n) =~= en,
/I factors

(6)

Since exp x coincides for x = n with ~, the nth power of the number e, it is natural
to write

eX = exp x, (7)

even when x is a real number rather than a positive integer. Thus (7) is to be regarded
as the definition of the function eX, but one which is particularly appropriate, because
of (6). In terms of this notation, formulas (3) and (4) become

(8)

while (5) takes the form

(9)
Choosing y = - x in (9), we get

so that

-X 1e =-.eX (10)

This is in keeping with the usual definition of negative powers for the case where
x is a positive integer,

4.43. a. Given any positive number M, no matter how large, we have

whenever x > In M, since eX is increasing. It follows that

lim eX = 00,
X •..•00

Moreover,

I' X I' -x I' 11m e = 1m e = 1m x'
x ...•-oo x-oo x ...•oo e

with the help of (10). Therefore, by (11),

lim eX = 0,
x ...•- 00

for the reason given in Sec, 2.91c.

(11)

(12)
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b. To differentiate the function eX, we use Theorem 2.81a, noting that all the
conditions of the theorem are satisfied (check this). Thus, writing y = eX, x = In y,
we have

so that

d X dy 1-e =-=--=
dx dx dx

dy

1
dIn y
dy

1
=-=y

1 '
y

d_ex=exdx .
(13)

As this formula shows, the function ~ has the remarkable property of being equal
to its own derivative, and therefore of being unaffected by any number of differentia-
tions. Thus, for example,

diOO
x. -.xdxIOO e = t: .

c. Figure 8 shows the graph of the function~. It is apparent from the figure
that ~ is increasing in (- 00, 00), has the range (0,00), and satisfies the formulas (8).
Note also that eX has the x-axis as its only asymptote, and is concave upward in the
whole interval (- 00,00), by Sec. 3.72, Proposition (1), since

d2_ex=~>O
dx2

for every x E ( - 00, 00).

4.44. The function aX

a. We now introduce the function cr, where a is positive and x is arbitrary.
This function, called the exponential to the base a, is defined by the formula

(14)

y

-2 -1

Figure 8.

2
x
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and has properties very similar to those of the function e", to which it reduces for
a = e. For example, it follows at once from (14) that

with the help of (8), (9) and (10). In particular, if n is a positive integer,

an = en In a = e'n aeln a ... e'n a = a . a ... a
~ '-v--"

II factors n factors

so that aX coincides for x = n with the nth power of the number a, as we would
expect from the notation.

Taking the logarithm of both sides of (14), we find that

In (aX) = In (eX In a).

Therefore

~~'=x~~ (1~
which generalizes formula (6), p. 154, from the case x = n, where n is an integer, to
the case of arbitrary real x.

b. The following proposition gives another key property of aX :
THEOREM. Let a be positive, and let x and y be arbitrary real numbers. Then

(16)
Proof. By (14),

so that (16) holds for a = e. Therefore

(ax)Y = (eX In a)y = e"Y In a = aXY. 0

c. The derivative of the function aX is easily calculated. In fact,

d d . d
- aX = - exlna = e"lna - (x In a) = aX In a,
dx dx dx

with the help of (13) and the chain rule.

4.45 •. The function x'

a. Let x be positive, and let r be an arbitrary real number. Then, changing
a to x and x to r in (14), we get the formula

x' = e,lnx, (17)

defining the rth power of x. The function x' has the domain (0, (0) and is continuous,
being a continuous function of a continuous function (Sec. 2.82d). It follows from
(17) that

1 1x-' = e-rlnx = -- = -,e,lnx x' (18)
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with the help of (10). Similarly, if rand s are arbitrary real numbers, then

(xry = (e' In xy = e's In x,

because of (16), with a = e, so that

(xr)S = xrs,

while

because of (9), so that

xr+s = xrxs.

(19)

(20)

(x> 0).

b. Suppose r is a rational number min, possibly an integer. Then the function
(17), which is defined only for x > 0, coincides in (0, (0) with the function xn1n intro-
duced in Sec. 2.7, Problems 5-7, which may well be defined for all x ~ 0 or even for all
x. This follows at once from formulas (18) and (19), and the way the function xm1n was
previously defined. The merit of (17) is, of course, that we are now able to define
xr for irrational r. Another virtue of (17) is that we can now construct the nth root
:fX, a number whose existence has so far been tacitly assumed. In fact, if x > 0,
then :fX is simply the perfectly well-defined number.

If n is odd, we then set :J - x = - ifX, and the definition of :fX is completed by
noting that on = 0 for every positive integer n, whether odd or even, so that ~ = O.

There is nothing to prevent us from defining 0' = 0 for a positive irrational
number r. In fact, this is the only sensible definition, since if r > 0, then r In x --+ - 00
as x --+ 0+, by formula (9), p. 155, so that xr = er In x --+ 0 as x --+ 0 +, by formula (12).

c. We are now ready to prove the key formula (14), p. 78.
THEOREM. Let r be an arbitrary real number. Then

d_xr = rxr-I
dx

Proof. By (13) and the chain rule,

d d d r_ xr = _ er In x = er In x _ (r In x) = xr _ = rxr- I,
dx dx dx x

with the help of (18) and (20). 0
Thus we have at last proved all the formulas given in Sec. 2.74e.

PROBLEMS

1. Verify that the graph of the function kex (k > 0) can be obtained by shifting
the graph of eX along the x-axis.

2. Differentiate
(a) e4x+5; (b) e-3x; (c) x~; (d) eX(1 - x2).

3. Differentiate

(a) ~2;
eX - 1

(b) eX + l' (d) J1+7.
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4. According to the mean value theorem (Sec. 3.43b),

f(l + dx) - f(l) = /'(1 + O:dx) dx,

where 0 < 0: < 1. Find 0: if f(x) = eX, dx = 1.
5. Verify that

6. Find the area between the curves y = eX and y = e-X from x = In 2 to x = In 3.
7. Find the local extrema of the function y = (x + 1)10e-x.

8. Find the inflection points and investigate the concavity of the function y = e -x2/2.

Graph this function. '
9. How is the function aX defined in Sec. 4.44a related to the function loga x

defined in Sec. 4.36a?
10. Solve the equation 2X

- 2x = O.
11. An advisor to a certain king was asked what he would like as a reward for

interpreting one of the king's dreams. He asked for a chessboard with one
grain of rice on the first square, twice as much rice on the second square as on
the first, twice as much on the third square as on the second, and so on. Why
did the king have his advisor executed for insolence?

12. Differentiate

1 - lOx
(d) 1 + lOX'

*13. Show that

lim aX = 0
x-+ - 00

if a > 1, while

if 0 < a < 1.
*14. Show that

lim x' = 00,
x ...•oo

if r > 0, while

lim x' = 0,
x ...• oo

if r < lI.
*15. Find the inverse of the function

x-+ - 00

lim x' = 0
x-+O+

lim x' = 00
x-.o+

y = log2 (x + JI+X2).
*16. For what values of c does the function eX + cx3 have an inflection point?
17. Use differentiation to confirm that the fourteenth term of the sequence

(n = 1,2, ... )

is the largest.
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4.5 MORE ABOUT THE LOGARITHM AND EXPONENTIAL

4.51. The number e

8. To derive formula (11), p. 156, we start from the fact that

dinxi =~I =1dx x=l x x=l .

Expressing this derivative as a limit, with h instead of t1x for brevity, we have

lim _In_(_l_+_h_)_-_I_n_1 = lim _In_(I.+...h_),
h-O h h-O h

so that

lim -hI In (1 + h) = 1.
h-O

Therefore

lim In (1 + W1h = 1,
h-O

with the help of formula (15), p. 162. Thus the function

f(h) = {In (1 + h)l/h ~f h =1= 0,
1 If h=O

(1)

is continuous at h = O. But then, by Sec. 2.82d, the composite function ef(h) is also
continuous at h = 0, since eX is continuous at x = 1. It follows that

lim ef(h) = ef(O) = e1 = e,
h-O

or equivalently

lim (1 + W1h = e.
h-O

(2)

Suppose h = lin, where n is a positive integer. Then h ~ 0 implies n ~ 00, and
(2) takes the form

lim (1 + ~)" = e,
n"" 00 n

in agreement with formula (11), p. 156.
b. There is a more general formula

lim (1 + :.)" = er,
n-+co n

(3)

(4)

valid for an arbitrary real number r. (Note that (4) reduces to (3) for r = 1.) The
formula holds for r = 0, since it then reduces to the trivial equality

lim 1" = eO = 1.



166 Integral Calculus Chap. 4

Let h = rln, where r # O. Then h -> 0+ as n -> 00 ifr > 0, while h -> 0- as n -> 00

if r < O. Therefore

lim (1 + ~)n= lim (1 + h)'lh = lim [ef(h)]"
n .•.• oo n h.•.•O:t h.•.•O:t

where j(h) is the function (1). As already noted, the function ef(h) is continuous at
h = 0, where it has the value e. Therefore the composite function [ef(h)]' is also
continuous at h = 0, since xr is continuous at x = e. It follows that

lim [ef(h)]' = [ef(O)]' = er,
h...•O:t

which is equivalent to (4).

4.52. Compound interest

The following three examples explore this very practical topic, and show how
the exponential function gets into the act:

a. Example. Suppose money invested at an annual interest rate r, or equiva-
lently at 100r percent, is compounded N times a year. Show that a principal of P
dollars will grow to

A = P(1 +~rt
dollars at the end of t years. Show that

( )

-Nt

P=A 1+~

(5)

(6)

dollars must be invested now to become worth A dollars in t years.
SOLUTION. Let Am be the amount in the bank at the end of the mth interest

period, assuming that no money is withdrawn after the initial deposit. Then

Am+ 1 = Am + Am ~ = Am (1 + ~).

since the interest is computed on the accrued amount at a rate equal to r, the nominal
annual interest rate, divided by N, the number of compoundings per annum. The
initial amount Ao is, of course, just the principal P. Therefore the amount A in the
bank after t years, that is, after Nt interest periods, is equal to

which proves (5), since Ao = P. To get (6), we solve (5) for P, obtaining

A (r)-Nt
P = ( r )Nt = A 1 + N

1 +-N
b. Example. Suppose interest is "compounded continuously," that is, suppose

the number of compoundings N per annum becomes "arbitrarily large." Show that
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formula (5) for the "compound amount" A becomes

while formula (6) for the "present value" P becomes

P = Ae-,t.

SOLUTION. Here we have

A = P ~~ (1 +~rt
Let n = Nt, so that N -+ 00 implies n -+ 00. Then

A = P lim (1 + ~)n= e't,
n~oo n

with the help of (4). This proves (7). To get (8), we solve (7) for P, obtaining

(7)

(8)

c. Example. Let P = $1,000, r = 6%, t = I year. Test the accuracy of for-
mula (7), as compared with the exact formula (5).

SOLUTION. The results are given in the following table for annual, semi-
annual, quarterly, monthly, daily, and contin.uous compounding (the last indicated
by 00):

N 1 2 4 12 365 00

A $1,060.00 $1,060.90 $1,061.36 $1,061.68 $1,061.83 $1,061.83

4.53. Logarithmic differentiation

In calculating derivatives, it is often helpful to first take logarithms and then
differentiate the result. The following two examples show the power ofthis technique,
called logarithmic differentiation.

a. Example. Differentiate

(x - 1)\/2X+i
y = (x2 + 3)4eX •

SOLUTION. Taking logarithms, we get

1
In y = 2ln (x - 1) + lIn (2x + 1) - 4}n (x2 + 3) - x. (9)

Differentiation of (9) then gives

t = _2_ + 2 _ 4. 2x _ 1
y x-I 2(2x + 1) x2 + 3

where the prime denotes differentiation with respect to x and we repeatedly use the
chain rule. Multiplying by y, we get the desired derivative

I (x - 1)2.J2X+1 ( 2 1 8x )
y = (x2 + 3)4~ x-I + 2x + 1 - x2 + 3 - 1 .
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The quantity

d y' 1dy
-Iny=-=--
dx y ydx

is called the logarithmic derivative of y.
b. Example. Differentiate

y = uP,

where u and v are both differentiable functions of x.
SOLUTION. By logarithmic differentiation, we have

Iny=vlnu,

y' u'
- =;= v' In u + V-.
y U

Therefore

y' = y(v'lnu + v ~) = U"(v'lnu + v ~) = u"v'lnu + VU"-lU'. (10)

For example, if y = xx, so that u = v = x, then (10) reduces to

y' = xxx' In x + xxx-lX' = xX(lnx + 1),

since x' = (d/dx)x = 1.

4.54. Elasticity

a. Next we introduce a concept of considerable interest in business and
economics. Given a function y = f(x), by the derivative of y with respect to x we
mean, of course, the limit as L\x -+ 0 of the difference quotient

L\y f(x + L\x) - f(x) _ Change in y
L\x L\x - Change in x.

Let the proportional change in y be defined by

L\y
y

(11)

Then the logarithmic derivative of y with respect to x is the limit as L\x -+ 0 of the ratio

L\y
y Proportional change in y

~ = Change in x

since

L\y
. y 1. L\y 1dy d
11m -- = - 11m - = - - = -In y.
6x-0 L\x y 6x-0 L\x y dx dx

Similarly, defining the proportional change in x by

L\x
x

(12)
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we can go a step further and introduce the limit as !!J.x -+ 0 of the ratio

!!J.y
y Proportional change in y
!!J.x = Proportional change in x'
x

We then get a quantity
!!J.y

B = lim _y_ = ~ lim !!J.y = ~ dy
yx 4X-+O!!J.X y 4X-+O !!J.x y dx'

x

(13)

called the elasticity of the function y = f(x), at the point x. As a measure of the
"change in y due to a change in x," the elasticity has the merit of being independent
of the units of x and y, which are divided out in forming the ratios (11) and (12).
This is a great convenience in certain business problems, where, for example, y might
be the quantity of a commodity demanded at the price x. Changing the units of x
from dollars to pesos, say, or the units of y from bushels to carloads, would then
have no effect on the elasticity of the demand curve.

Note that we can also regard the elasticity Byx as the limit

_ l' Percentage change in y
Byx - 1m . .

4x-+O Percentage change In x

This follows at once from the fact that

Percentage change in y
Percentage change in x

100 !!J.y
y

100 !!J.x
x

!!J.y
y Proportional change in y

= !!J.x = Proportional change in x.
x

b. There is another way of writing (13) as a kind of "double logarithmic deriva-
tive" of the form

d (in y)
Byx = d (In x)'

(14)

where the expression on the right is the ratio of the differential ofln y to the differential
ofln x. To verify (14),we recall from Sec. 2.55a that if y = f(x), then dy, the differential
of f(x), is given by the formula

dy = f'(x) dx.

Therefore

1
d(ln x) = (In x)' dx = - dx,

x

while

y' 1 dy
d(ln y) = (In y)' dx = - dx = - -d dx,

y y x
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by the chain rule, so that

d(ln y)
d(ln x) =

!dy dx
ydx
1
-dx
x

xdy
= y dx = eyx'

(15)

as claimed.
c. Example. Suppose the demand for a commodity produced by a monopolistic

firm is described by the function Q = Q(P), where Q is the quantity demanded at
the price P. Then

d(ln Q)
- d(ln P)

is called the elasticity of demand, at the price P. Do not be disconcerted by the extra
minus sign in (15). Its sole purpose is to make the elasticity come out positive, in
keeping with economic convention and in anticipation of the fact that a demand
curve typically has negative slope (Sec. 3.2, Prob. 9). The demand is said to be elastic
if eD > 1 and inelastic if eD < 1.

Suppose the demand function is

Q = Q(P) = 60 - 3P.

Find eD• When is the demand elastic? Inelastic? Express the firm's marginal revenue
(Sec. 3.2, Prob. 7) in terms of the price and the elasticity of demand. Why should the
firm adjust its price to keep the demand elastic?

SOLUTION. Here

-3P
60 - 3P

P
20 - P'

so that the demand is elastic (eD > 1) if 10 < P < 20 and inelastic (eD < 1) if
o < P < 10. The firm's total revenue is

R(Q) = PQ(P) = QP(Q),

as in Sec. 3.2, Problem 10,where P(Q) is the inverse function of Q(P). Correspondingly,
the firm's marginal revenue is

MR(Q) = !..- QP(Q) = P + Q dP = P (1 + @ dP) = P (1 _ ~),
dQ dQ PdQ eD

where we use the fact that

dP 1
dQ = dQ '

dP

(16)

by the rule for differentiating an inverse function (Sec. 2.81b). The firm certainly
wants to operate at an output level where marginal revenue is positive, so that more
revenue would be received if the output were increased slightly. It should therefore
make eD > 1 in (16). In other words, other things being equal, it should keep the
demand elastic, by choosing a price in the range 10 < P < 20.
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PROBLEMS

171

1. Evaluate

(a) lim (~l)";
" •..• 00 n + ( 1)"+ 1(b) lim 1 + - ;

n ...•.oo n
(c) lim (1 _ !)".

n--oo n

2. Evaluate

(a) lim (1 + .!)X; (b) lim (1 + 2X)1/X;
x-oo x x-a

3. It was shown in Sec.4.51a that

lim In (1 + x) = 1.
•...•0 x.

Use this to show that

(c) lim (x + l)x.
x ...• oo x-I

I' loga(1 + x) I1m = oga e,
X •..•0 x

4. Use (17)to show that
aX - 1

lim-- = Ina,
X •..•0 x

5. Use (18)to show that
. x' - 1
lim-- = r.
x ...•1 x-I

(17)

(18)

(19)

6. Use (17)-(19) to evaluate

() I' .ifX - 1 (b) I' 2x - 1 () I' IOg10(1 + x)a Im---; 1m-----' c Im-----,
x ...•l.jX - 1 x...•oJ1+X - l' X •..•0 lOx - 1

7. How much is a principal of $1,000worth in 5years ifit is compounded quarterly
at an annual interest rate of 8%?

8. A principal which is being compounded continuously doubles in 10 years,
What is the annual interest rate?

9. How long does it take $10,000compounded continuously at an annual interest
rate of 7% to grow to $25,000?

10. What amount of money must be invested now to be worth $10,000 in 5 years
if compounded continuously at an annual interest rate of 6%?

11. Justify calling

the effective annual interest rate, as opposed to the nominal annual rate r,
12. Interpret the number e in the language of finance,
13. Use logarithmic differentiation to fihd the derivative of

.'
(x + 1)2

(a) (x + 2)3(X + 3)4;

~2+2x

(b) 4/3 I 'x nx
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14. Differentiate
(a) xx2; (b) Xl/x; (c) (In xt; (d) eX".

15. Show that the function y = XX has no inflection points.
16. Verify the following "chain rule for elasticities":

17. What is the elasticity of the function eQX?
18. Given an example of a function with constant nonzero elasticity.
19. Show that if f(x) has elasticity Byx, then xf(x) has elasticity 1 + Byx•

*20. If C = C(Q) is a firm's total cost function (Sec. 3.22), then

d(In C)
Be = d(In Q)

(without a minus sign) is called the elasticity of cost, at the output Q. Verify that
(a) If Be < 1 at a given output, then average cost (AC) is greater than marginal
cost (MC), and average cost decreases as output increases;
(b) If Be > 1 at a given output, then average cost is less than marginal cost,
and average cost increases as output increases.

*21. Consider the functions

and

sinh x = ~ (e" - e-X),

called the hyperbolic cosine of x and the hyperbolic sine of x, respectively. Graph
the functions !eX

, !e-X
, cosh x and sinh x in the same system of rectangular

coordinates. Show that
(a) cosh x ~ 1 for all x, cosh 0 = 1;
(b) sinh x > 0 if x > 0, sinh x < 0 if x < 0, sinh 0 = 0;
(c) lim cosh x = 00, lim sinh x = 00, lim sinh x = - 00;

x ...•:t 00 x ...•00 X"" - 00

(d) :x cosh x = sinh x, :x sinh x = cosh x.

*22. It can be shown that the number e is the sum of the "rapidly convergent" series

f ~='1 + 1 +!+!+~+ ... +~+ ...
n =0 n! 2 6 24 n ! .

By referring to the value of e given in Sec. 4.34, show that the sum of just 8
terms of this series gives a value of e which is accurate to 4 decimal places.

4.6 INTEGRATION TECHNIQUE

The technique of integration is inherently more difficult than that of differentia-
tion. Thus, while it is no trick at all to become a minor expert on differentiation,
it is the easiest thing in the world to write down integrals that would stump even a
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professional mathematician. However, two powerful methods of integration are
available at the level of this course. We now discuss these methods and use them to
evaluate a number of integrals which may appear quite intractable at first glance.

4.61. Integration by substitution

a. We begin by observing that if

f g(t) dt = G(t) + C,

then

f g(t(x) )t'(x) dx = G(t(x)) + C (1)

for every differentiable function t = t(x). Here the common practice of denoting
the dependent variable and the function by the same letter, t in this case, is particularly
appropriate. To verify (1), we merely note (as in Sec. 3.53c) that both sides of (1) have
the same derivative. In fact,

:x f g(t(x) )t'(x) dx = g(t(x) )t'(x),

by the very definition of the indefinite integral as an antiderivative of its integrand,
while

d
dx G(t(x)) = G'(t(x) )t'(x) = g(t(x) )t'(x),

by the chain rule and the fact that G(t) is an antiderivative of g(t).
Now suppose we want to evaluate an integral

f f(x) dx, (2)

which does not look like anything familiar, but which can be recognized as being
of the form

f g(t(x) )t'(x) dx, (3)

in terms of some function g(t) of a new variable t = t(x), where g(t) is a function
which is more easily integrated than f(x) itself. Then it follows from (1) that

f f(x) dx = G(t(x)) + C. (4)

Integration by substitution is also known as integration by change of variables, for
a self-evident reason.

b. Recalling from Sec. 2.55a that the differential of t is given by

we can write (3) simply as

dt = t'(x) dx, (5)

f g(t) dt,

where it is understood that the substitution t = t(x) will eventually be made. The
fact that (2) and (3) are equivalent then takes the concise form

f f(x) dx = f g(t) dt.
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The advantage of writing the expression behind an integral sign as a product of a
function (the integrand) and a differential is now apparent for the first time. In fact,
if we change variables, then formula (5), or its analogue

dx = x'(t) dt (6)

for the case of a substitution x = x(t), automatically multiplies the old integrand by
the appropriate "correction factor," without any need for a separate calculation in-
volving the chain rule.

c. For example, to evaluate

f x dx
1 + x2'

let t = 1 + x2, so that dt = 2x dx, or equivalently x dx = !dt. Then

(7)

where the integral on the right can be recognized at once as being equal to In t.
Therefore, by (4),

f xdx 1 1 ~
1 + x2 = "2 In t = "2 In (1 + x2) = In v 1 + x2 + C,

after going back to the original variable x and introducing a constant of integra-
tion c.

Once you have got the idea of how the technique of integration by substitution
works, you can omit some of the intermediate steps, even leaving out explicit in-
troduction of the auxiliary variable t. Thus a more concise way of evaluating (7) is

where the whole expression 1 + x2 is treated as a variable of integration.
d. To evaluate a definite integral by substitution, we first evaluate the corre-

sponding indefinite integral, and then use the fundamental theorem of calculus
(Sec. 4.24a). Thus, for example,

fl X dx 2 = In .Jf+X211 = In0+1 - In.JT+O = In J2.Jo 1 + x 0

There is also a more direct method of evaluating a definite integral by substitution
(see Examples 4.62c and 4.62d).

e. Instead of recognizing (2) as being of the form (3), involving a differentiable
substitution t = t(x), we can also try making a differentiable substitution x = x(t)
directly in the integral (2), thereby "transforming" it into

f f(x(t) )x'(t) dt, (8)

with the aid of(6). Again, this will help only ifthe new integral (8) is easier to evaluate
than the original integral (2), which means that the substitution x = x(t) must be
chosen intelligently.
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4.62. Examples

a. Evaluate

f dx
JX(1 + JX)'

Integration Technique 175

SOLUTION. The substitution x = t2 seems a good choice, since it gets rid
of the radical. With this substitution, JX = t,

1 1
d(JX) = (JX)' dx = r:: dx = -2 dx = dt,

2" x t

so that dx = 2t dt. Therefore

f dx = 2 f t dt = 2 f ~ = 2 In (1 + t)
JX(1 + JX) t(1 + t) 1 + t '

or

f JX dx JX = 2 In (1 + JX) + C,
x(1 + x)

after going back to the original variable x and introducing a constant of integra-
tion C. The expression 21n (1 + JX) can be replaced by In (1 + JX)2, if you prefer.

Alternatively, you might recognize that

is of the form

f dt
1 + t

if t = JX, but this requires a good eye. The fact that each of the functions x = t2
and t = JX is the inverse of the other is, of course, no accident (see Prob. 18).

b. Evaluate

f Inxx dx.

SOLUTION. If t = In x, then dt = dx/x and

flnx f 1 1x dx = t dt = 2 t2 + C = 2 (In X)2 + C. (9)

On the other hand, if we choose the "inverse substitution" x = el, then dx = el dt
and

f
lnx flnel fx dx = 7 el dt = t dt,

and we get the same answer again.
c. Evaluate

SO In x dx.
1 X

(10)
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SOLUTION. Using (9), we have

Chap. 4

ie In x 1 Ie 1 1 1- dx = -(In X)2 = -(In e)2 - -(In 1)2 =-.
IX 2 12 2 2

On the other hand, suppose that instead of first evaluating the indefinite integral (9),
we try to calculate (10) from scratch. Then, just as before, we observe that the sub-
stitution t = In x reduces the expression behind the integral sign in (10) to t dt. This
suggests writing

fe In x d iP d- x = t t.
1 X «

(11)

But what are the appropriate limits of integration 0( and P? The answer is simple
enough: As the variable x varies from 1 to e in the left side of (11), the variable
t = In x varies from In 1 = 0 to In e = 1 in the right side, and hence 0( = 0, p = 1.
This is not only plausible, but perfectly correct, as shown in Problem 19. Therefore
we can write

fe In x dx = f1 t dt = !t211 = !
1 X Jo 2 0 2' (12)

(a, b positive),

without bothering to calculate the indefinite integral (9). Note that there is now no
need to return from t to the original variable x. In fact, once the second integral
in (12) has been evaluated, the first integral is automatically known, since both are
definite integrals and therefore numbers.

d. Starting from the definition

fx dtInx = -,
1 t

give another proof of the formula

In (ab) = In a + In b

already established in Theorem 4.33a.
SOLUTION. We have

In b = fb dt = fb d(at) = fab du,
J 1 t J 1 at Ja u

where in the last step we go over to a new variable u = at and make the corre-
sponding change in the limits of integration. Therefore

In b = fab dt
Ja t'

after returning to the original dummy variable t. It follows that

fab dt fa dt fab dtIn (ab) = - = - + - = In a + In b,
1 tit a t

with the help of Theorem 4.21c.

4.63. Integration by parts

a. We now consider another important integration technique. Let u(x) and
vex) be two differentiable functions such that u'(x)v(x) and u(x)v'(x) both have anti-
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derivatives. Differentiating the product u(x)v(x) with respect to x, and omitting
arguments for simplicity, we have

(uv)' = u'v + uv',

so that

uv' = (uv)' - vu'.

Multiplying (13) by dx and integrating with respect to x, we get

f uv' dx = f (uv)' dx - f vu' dx.

But

f (uv)' dx = uv + c,

and hence

(13)

f uv' dx = uv - f vu' dx,

where C is absorbed into the other constants of integration. In terms of the
differentials

du = u'dx, dv = v'dx,

(13) takes the even simpler form

f u dv = uv - f v duo (14)

Equation (14), called the formula for integration by parts, is well worth memorizing.
It is one of the most valuable tricks of the trade, often allowing us to express difficult
integrals in terms of easy ones.

b. To find a corresponding formula for definite integrals, we merely observe
that

f: u dv = [f u dvJ: = [uv - f v duJ: = uv I: - [f v duJ:
(justify the last step). Therefore

Lb u dv = uv I: - Lb v duo

4.64. Examples

a. Evaluate

(15)

f In x dx.

SOLUTION. This integral is of the form Ju dv if we choose u = In x, dv = dx.
We then have du = dx/x, v = x, and hence, by (14),

f In x dx = x In x - f dx = x In x - x + C,

where a constant of integration is supplied in the last step. It would be pointless to
include a constant of integration C in going from dv to v, since C would be cancelled
out automatically in the expression uv - Jv duo
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b. Evaluate

Chap. 4

f x In x dx.

SOLUTION. There are various possibilities here. We can choose u = x, dv =
In x dx, or u = In x, dv = x dx, or even u = x In x, dv = dx. The only good
choice is u = In x, dv = x dx, since only this 'choice makes Jv du simpler than Ju dv,
which is the whole point of integration by parts. We then have du = dx/x, v = tx2,
and hence, by (14),

f 1 If 1 1x In x dx = - x2 In x - - x dx = - x2 In x - - x2 + C2 2 2 4 .

c. Evaluate

fie X In x dx.

SOLUTION. We can start from (16), writing

~
e I d [1 2 1 2Je 1 2 1 2 1 1x n x x = - x In x - - x = - e In e - - e - - In 1 + -
1 2 412 42 4

1212112= :2 e - 4" e + 4" = 4" (e + 1).

Alternatively, we can start from (15), writing

Ie X In x dx = !x2 In x Ie - !Ie X dx = !e2 In e - !In 1 - t x21e
Jl 2 1 2 1 2 2 4 1

1212112= :2 e - 4" e + 4" = 4" (e + 1).

d. Evaluate

(16)

f x2 e" dx.

SOLUTION. Let u = x2, dv = eX dx. Then du = 2x dx, v = e", and therefore

f x2 eX dx = x2ex - 2f xex dx. (17)

To evaluate the integral on the right, we integrate by parts again, this time choosing
u = x, dv = eX dx, du = dx, v = eX:

(18)

Substituting (18) into (17) and supplying a constant of integration, we find that

(19)

You should get into the habit of checking formulas like this by differentiating the
expression on the right. In this case,

which confirms (19).
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PROBLEMS

1. Let f(x) be continuous and even in [ - a, aJ. Show that

fo fa 1 fa_J(x) dx = Jo f(x) dx.= '2 _J(x) dx.

2. Let f(x) be continuous and odd in [ - a, aJ. Show that

fa f(x) dx = - f: f(x) dx, fJ(x) dx = O.

3. Verify that

fol xm(1 - x)" dx = fol x"(l - xt dx,

where m and n are positive integers.
4. Use integration by substitution to evaluate

(20)

f X2
(a) ~dx;"x + 1

(d) fvl1: Inx dx.

5. Show that

(b) f ex2x dx; (c) f dx
x In2 x;

f ~~~:dx = In If(x)j + c. (21)

f dx
(c) x In x;f x + 1

(b) 2 2 3 dx;x + x-

6. Use (21) to evaluate

f 2x
(a) 1 + x2 dx;

f e2x

(d) e2x + 1 dx.

7. Find the average of the function y = In x over the interval [1, eJ.
8. Use integration by parts to evaluate

(a) f xax dx; (b) f x3ex dx; (c) f x31n x dx; (d) f JX In x dx.

9. Use integration by parts to verify that

f In (x + .j'f+'X2) dx = x In (x + .j'f+'X2) - .j'f+'X2 + c.

10. Evaluate

(a) fol xe-x dx;

(d) f In2 x dx.

11. Evaluate

(b) f:-l
In (x + 1) dx; (c) f X log2 X dx;

f (2X + 3X)2 dx, .

after first showing that aXbx = (ab)x.
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f dx
(b) 4x2 + 4x - 3'

12. Verify that

f dx = _I_In Ix + bl + c
(x + a)(x + b) a - b x + a

13. Use (22) to evaluate

f dx
(a) x2 _ 5x + 6;

(a =I- b). (22)

14. Find the area between the curves y = In x and y = In2 x.
*15. Show that

f cosh x dx = sinh x + C, f sinh x dx = cosh x + C.

*16. Use the substitution ~ = t - x to show that

fk=ln(x+~)+C.I + x2

*17. Evaluate

f e3x + I
(a) ~ + I dx; (b) f ~~: dx; f X2

(c) I _x2 dx.

*18. Given two functions f(x) and g(t), with antiderivatives F(x) and G(t), let t = t(x)
be a differentiable one-to-one function, with a differentiable inverse x = x(t),
such that one of the formulas

f f(x) dx = f g(t(x) )t'(x) dx, f f(x(t) )x'(t) dt = f g(t) dt (23)

holds. Show that the other formula also holds.
*19. Let

f f(x) dx = f g(t) dt

be shorthand for both of the formulas (23), depending on whether we replace
dt by t'(x) dx or dx by x'(t) dt. Show that

jb f(x) dx = f,'(b) g(t) dt, jx(fJ) f(x) dx = jfJ g(t) dt.Ja t(a) Jx(a) J",
*20. Evaluate the integral (20).
*21. Let P(x) be a polynomial of degree n. Verify that

f P(x)eX dx = [P(x) - P'(x) + P"(x) - ... + (_I)"p<n)(x)]eX + c.

*22. Let the quantity of a commodity demanded by the market at price P be
Q = Q(P), where Q(P) is a decreasing function, and let PI be the actual market
price. Then the total revenue received from the sale of the commodity is

(24)

where Ql = Q(P d and P = P(Q) is the inverse of the function Q = Q(P). Since
some consumers are willing to pay more than PI for the commodity, the total
revenue from the sale of a quantity Q 1 of the commodity would be greater than
(24) by some amount S, known as the consumer's surplus, if the price of the
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(2)

commodity were gradually lowered from Po, the price at which demand just
begins, to the actual market price PI' Show that

S = fo
Q1

P(Q) dQ - P1Ql' (25)

or equivalently

s = ,Po Q(P) dP. (26)Jpl
*23. Use both (25) and (26) to calculate the consumer's surplus S for the demand

function Q = 100 In (P olP) and market price PI = Pole.

4.7 IMPROPER INTEGRALS

4.71. a. In introducing the concept of the definite integral

f f(x)dx,

it was assumed from the outset that f(x) is defined at every point of the closed interval
[a, b], where, of course, a and b are finite numbers (Sec. 1.64a). Thus, at this stage
of the game, neither of the integrals

(1)

and ,I dx
Jo JX

makes sense, the first because the upper limit of integration is infinite, the second
because the integrand is not defined at x = 0 and in fact approaches infinity as
x ~ 0+. However, there is a simple way of ascribing meaning to both of these
integrals, which are called "improper" to distinguish them from the ordinary or
"proper" integrals considered up to now. As we will see in a moment, the device is
essentially the same in both cases: First we calculate the integral over a finite interval
in which the integrand is well-defined, and then we take the limit of the resulting
proper integral as the interval of integration is suitably enlarged. For simplicity, we
will consider only continuous integrands.

b. Suppose f(x) is continuous, and hence integrable (Sec. 4.14) in every interval
[a, X], where a is fixed and X > a is variable, and suppose the limit

lim ,x f(x) dx
X-CX) Ja

exists and is finite. Then the improper integral

f' f(x)dx

(3)

(4)
is said to be convergent and is assigned the value (3). On the other hand, if the limit
(3) is infinite or fails to exist, we call the integral (4) divergent and assign it no value
at all.
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Similarly, suppose f(x) is continuous in every interval [X, a], where a is fixed and
X < a is variable, and suppose the limit

x~~'" f; f(x) dx

exists and is finite. Then the improper integral

f", f(x) dx

(5)

(6)

is said to be convergent and is assigned the value (5). Again we call the integral (6)
divergent if the limit (5) is infinite or fails to exist. We can also consider the case
where both limits of integration are infinite. Thus, suppose f(x) is continuous in
every finite interval, and suppose both improper integrals

t", f(x) dx, l'" f(x) dx (7)

(8)

are convergent for an arbitrary finite point c. Then the improper integral

f~",f(x) dx

is said to be convergent, and is assigned the value

f~ '" f(x) dx + 1'" f(x) dx. (9)

Of course, this definition depends on the fact that both the sum (9), and the con-
vergence or divergence of the integrals (7), are independent of the choice of the point c
(see Prob. 5). On the other hand, the integral (8) is said to be divergent if either of
the integrals (7) is divergent.

c. We now turn to improper integrals of the type (2), where the integrand
becomes infinite at one or more points of the interval of integration. Suppose f(x)
approaches infinity as x -+ a+, at the same time that f(x) is continuous, and hence
integrable, in every interval [a + B, b], where a and b > a are fixed and B > 0 is
variable (but less than b - a). Suppose further that the limit

lim jb f(x) dx (10)
£ .....•0 + Ja+£

exists and is finite. Then the improper integral

lb f(x) dx (11)

is said to be convergent and is assigned the value (10). As before, we call the integral
(11) divergent if the limit (10) is infinite or fails to exist. Similarly, if f(x) becomes
infinite at the other end point b, we set

ib ib-.f(x) dx = lim f(x) dx,
a £ .....•0 + a

by definition, while if f(x) becomes infinite at an interior point C E (a,b), we write

Jab f(x) dx = f: f(x) dx + f f(x) dx,

provided that both integrals on the right are convergent.

(12)
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4.72. Examples

a. The integral (1) is convergent. In fact

foo d~ = lim fX d~ = lim [_!JX = lim (1 - ~) = 1,
Jl X X-+oo Jl X X-+oo X 1 X-+oo X

and hence I

This number can also be regarded as the area of the "infinite region" under the curve
y = l/x2 from 1 to 00, by a natural extension of the definition of the area under a
curve for the finite case (Sec. 4.11).

b. The integral

foo dx
Jl X

is divergent, since

Ix dx IX
lim 1 - = lim In x 1 = lim In X = 00 ..

X-+oo x x-co X-a)

c. The integral

is convergent. In fact,

= lim (_e-X) IX = lim (1 - e-X) = 1,
X-oo 0 X-+oo

since e-x -> 0 as X -> 00, and similarly

fo e-ixi dx = fO ~ dx = lim fO eX dx
-00 -00 X-+-oo X

= lim eX I;= lim (1 - eX) = 1.
X-+-oo X-+-oo

Therefore, as in (9),

foo e-ixi dx = fO e-1xl dx + foo e-/x/ dx = 2.
-00 -00 Jo ,

d. The integral (2) is convergent. In fact,

f1 dx . i1 dx . [ JlJo r:. = hm • r= = hm 2JX = lim (2 - 2J8),
'\IX £-0+ yX £-0+ E £-0+

and hence

(13)
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(14)

is divergent, since

, j1 dx I' [ 1J1lim J, 2 = 1m --
.-0+ • X .-0+ X.

f. The integral

lim (!- 1) = 00.
.-0+ e

j2 dx
Jo JJX=ll

is convergent. In fact, using (12) with c = 1, we get

i2 dx i1 dx i2 dx
Jo JJX=ll = Jo ~ + J1 ~

= - r~+ Sol ~ = s: ~ + Sol ~

(let t = 1 - x, u = x - 1). But both integrals on the right equal 2, by formula (13),
and hence

i2 dx _ 4
Jo JJX=ll- .

g. Since the integral (14) is divergent, so is the integral

II dx
-1 x2

(why?). Suppose we make the mistake of calculating this integral formally, ignoring
the fact that the integrand becomes infinite at the origin. Then we get the absurd
result

II dx = [_!J1 = -2,
-1 x2 x -1

seemingly an example of a positive function with a negative integral!

PROBLEMS

1. Investigate the improper integral

jet) dx
Ja x'

for arbitrary r.

(a > 0)
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2. Evaluate

Loo b foo~.(a) xe-x2 dx; ()
,0 2 X In x'

3. Investigate the improper integral

fa dx
Jo x'

for arbitrary r.
4. Evaluate

Improper Integrals

I

(c) foo ~ i
2 xln2x':

(a > 0)

185

f2 dx
(a) 1 x In x;

(b) JS dx;
-1 ifX Is dx

(c) 3 1(4 _ X)2'

5. Let f(x) be continuous in every finite interval. Show that the two integrals

100
f(x) dx, 1~f(x)dx (c -# e')'

are either both convergent or both divergent, and similarly for

Show that

too f(x) dx, (e -# e').

"

toof(x)dx +100

f(x)dx = t'oof(x)dx + i~f(x)dx.
Show that the sum (12) is also independent of e.

6. How does the theory of improper integrals resemble the theory of infinite series?
7. First define and then find the area A between the curves y = X-1/2 and y = X-1/3

from x = 0 to x = 1.
*8. First define and then find the area A between the curves y = cosh x and y = sinh x

in the first quadrant.



Chapter 5

INTEGRATION
AS A TOOL

5.1 ELEMENTARY DIFFERENTIAL EQUATIONS

5.11. The equations

xy' - 2y = 0, y" + x2 = 0, y(4) = y2 : (1)

are all called differential equations, because each contains at least one derivative

y' = ~~ = f'(x), " d
2
y j"()Y = dx2 = X , •••

of an "unknown" function y = j(x). Note that the second equation does not con-
tain the function y itself, while the third equation does not contain the independent
variable x, although x is, of course, present implicitly as the argument of the func-
tion y = j(x) and its fourth derivative y<4)= j(4)(X). A differential equation is said
to be oj order n if it contains the nth derivative y<n)= j(n)(x), but no derivatives of
higher order. Thus the equations (1) are of orders 1, 2 and 4, respectively.

In this book we have no intention of doing more than scratch the surface of the
vast subject of differential equations and their applications. In fact, we will consider
only the most elementary differential equations, of either the first or the second order.

5.12. a. Consider the first-order differential equation .

dy
dx = F(x,y), ~(2)

where F(x, y) is a function of two variables, which may reduce to a function of x
alone, to a function of y alone, or even to a constant. By a solution of (2) we mean
any function y = q>(x) such that .

d~~X) = F(x, q>(x))

holds for all values of x in some interval. We write q>(x) instead of j(x) here, because
the solution is regarded as a "known" function.

For example, y = ex2 is a solution of the differential equation

186

dy
dx = 2xy, (3)
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since

Elementary Differential Equations

d x2e 2
- = 2xex == 2xy
dx

187

in every interval. Moreover, if C is an arbitrary constant, then y = Cex2 is also a
solution of (3), since

d(~;X2) = 2Cxex2 == 2xy.

We call

(4)

the general solution of (3), because every solution of (4) can be obtained from (4) by
making a suitable choice of C (see Example 5.13d).

More generally, let

y = <p(x, C) (5)

be a solution of the differential equation (2), involving an "arbitrary constant" C
(which is temporarily variable!), and suppose every solution of (2) can be obtained
from (5) by making a suitable choice of C. Then (5) is called the general solution
of (2), and each solution of (2), corresponding to a particular choice of C in (5), is
called a particular solution of (2). For example, giving C the values 0 and J3 in (5),
we get two particular solutions i

y == 0,
of equation (3).

b. In Sec. 1.12 we posed two key problems of calculus. The meaning of the
first problem was clarified in Sec. 2.42d. The second problem was originally stated
in the following unsophisticated language:

(2) Given the rate of change of one quantity with respect to another, what
is the relationship between the two quantities?

We are now in a position to resta.te this problem elegantly in more precise language:

(2') Solve the differential equation dy/dx = F(x, y).

Here, of course, dy/dx is the rate of change, and to give this rate of change we will
in general have to know the values of both variables x and y. '

5.13. Examples

a. The simplest first-order differential equation is

dy
dx = f(x),

and its general solution is just

y = f f(x) dx.

(6)
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(8)

This follows at once from the meaning of the indefinite integral as the "general anti-
derivative" of f(x). Here it is better to write the general solution of (6) in the form

Y = f f(x) dx + C, (7)

which makes the arbitrary constant of integration explicit. We then think of Jf(x) dx
as any fixed antiderivative of f(x). We will follow this convention in any problem
involving differential equations.

b. Find the particular solution of the differential equation

dy
-=Xdx

satisfying the condition
Ylx=! = 1. (9)

SOLUTION. First we use (7) to find the general solution of (8), obtaining

Y = f x dx + C = ~x2 + C. (10)

Then we use the condition (9) to determine the constant C in (10). Thus

Ylx=! = Gx2 + c)lx=! = ~ + C = 1,

so that C =!. Substituting this value of C into (10), we get the desired particular
solution

1 2
Y = "2 (x + 1). (11)

The fact that (11) satisfies both (8) and (9) is easily verified by direct calculation.
More generally, by an initial condition for the differential equation (2), we mean

a condition of the form
(12)

where Xo and Yo are given numbers (the word "initial" stems, by analogy, from the
common situation where the independent variable is the time). If (2) has the general
solution <p(x, C), the particular solution of (2) satisfying (12) has the value of C ob-
tained by solving

<p(xo, C) = Yo.

c. Solve the differential equation

dy f(x)
dx g(y)'

subject to the initial condition (12).
SOLUTION. This equation, or the equivalent equation

~~= f(x)g*(y),

with
1

g*(y) = g(y)'

(13)
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is said to have separated variables. Multiplying (1~) by g(y) dx, we get

g(y) dy = f(x) dx, (14)

where the left side involves only the variable y and the right side involves only the
variable x; it is in this sense that the variables are "separated." To solve (14), we
merely integrate both sides, obtaining

f g(y) dy = f f(x) dx + C

(one constant of integration is enough), or

G(y) = F(x) + C, (15)

where G(y) is any antiderivative of g(y) and F(x) is any antiderivative of f(x). To
determine C, we impose the initial condition (12), which says that y = Yo when
x. = xo' Thus

G(yo) = F(xo) + C,

so that

Substituting this expression for C into (15), we get

G(y) = F(x) + G(yo) - F(xo). (16)

The unique solution of the differential equation (13) satisfying the initial condition
(12) is then obtained by solving (16) for y as a function of x, call it y = <p(x). In the
cases to be considered here, we will always be able to do this without difficulty.

The function y = <p(x) determined by (16) clearly satisfies the initial condition
(12), which is "built into" equation (16). To verify that y = <p(x) actually satisfies
the differential equation (13), we need only use the chain rule to differentiate (16)
with respect to x. This gives

dG(y) dy dF(x)
dYdx=~'

so that

g(y) ~~ = f(x),

which is equivalent to (13).
d. Find the general solution of the differential equation (3).
SOLUTION. To separate variables, we divide (3) by y, obtaining

!dy = 2x.
y dx

Multiplying (17) by dx and integrating, we then get

f d: = f 2x dx + k,

or

In Iyl = x2 + k,

(17)

(18)
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(19)

where we denote the arbitrary constant of integration by k, saving the symbol C for
later. In writing In Iyl, we use the fact that if y is negative, then In Iyl = In (- y) has
the same derivative l/y as In y (check this). Taking the exponential of both sides of
(18), we find that

Iyl = ex2+k = ekex2 = Cex2
,

where C = ek is now an arbitrary positive constant (why?). But Iyl can never vanish,
since Cex2 > O. Therefore y is either positive or negative for all x. Thus we can
take the vertical bars off Iyl, obtaining formula (4), by simply allowing C to take
arbitrary negative values, as well as arbitrary positive values. In dividing (3) by y,
we have tacitly assumed that y is nonvanishing. Thus the solution y == 0 may have
been lost in solving (17) instead of (3), and indeed it has, as we see at once by sub-
stituting y == 0 into (3). Therefore the general solution of (3) is obtained by allowing
C to take any value in (4), including zero.

e. The simplest second-order differential equation is

d2y
dx2 = f(x).

Integrating (19), we get

dy f d
2
y fdx = dx2 dx = f(x) dx + C1 = F(x) + C1, (20)

where C
1

is an arbitrary constant of integration and F(x) = Jj(x) dx is any fixed
antiderivative of f(x). Observe that (20) is now a first-order differential equation,
and is in fact of the form (6). Integrating (20) in turn, we get

y = f~:dX = f F(x)dx + f C1 dx + C2 = f F(x)dx + C1x + C2,

where C
2

is another arbitrary constant of integration. Thus the general solution of
the differential equation (19) involves two arbitrary constants, and this is a char-
acteristic feature of the general solution of a second-order differential equation. There-
fore, to single out a particular solution of (19), we must impose two initial conditions,
since this will give us two algebraic equations which we can solve for the two con-
stants C1 and C2•

f. Find the particular solution of the differential equation

d2y_ = x (21)
dx2

satisfying the initial conditions
1 1

ylX=l = 2' y'\x=l = 2' (22)

SOLUTION. Note that one initial condition involves the function y, while the
other involves its derivative y'. Integrating (21) twice with respect to x, we get first

(23)

and then
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Substituting the second of the conditions (22) into (23) and the first into (24), we
find that

Solving for C1 and C2, we then obtain
4

C1 = -1, C2 =3'
Thus the particular solution of the differential equation (21) satisfying the conditions
(22) is just

I 3 4
Y = -x - x +-.

6 3

Instead of imposing one condition on Y and the other on y' at the same point,
we can impose two conditions on Y at two different points. In this case, the conditions
are called boundary conditions rather than initial conditions. For example, to find the
particular solution of (21) satisfying the boundary conditions

we solve the equations
Ylx=o = 1, Ylx=! = 2,

for C! and C2. This gives

1 = C2,

1
2 = (j + C1 + C2

and leads to the particular solution

1 3 5
Y=(jx +(jx+1.

PROBLEMS

1. Show that equation (2) is a special case of the even more general first-order dif-
ferential equation <I>(x, Y, y') = 0, where <I>(x, Y, z) is a function of three variables.

2. Find the particular solution of the differential equation y' = - y/x satisfying
the initial condition Ylx = 2 = 1. ~

3. Find the particular solution of the differential equation y' + 2xy = 0 satisfying
the initial condition Ylx=o = 1.

4. Find the particular solution of the differential equations y' = 2.JY In x satisfying
the initial condition Ylx=e = 1.

5. Show that all but one of the solutions of the differential equation y'2 = 4y are
given by the formula y = (x + C)2, where C is an arbitrary constant. What
is the extra solution?

6. Find the general solution of the differential equation y"= In x.
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*7. By making the preliminary substitutions y' = p, y" = p(dpjdy), find the parti-
cular solution of the differential equation y" = 2y3 satisfying the initial con-
ditions Ylx=o = 1, y'lx=o = 1.

*8. A differential equation of the form

dy = f(~)
dx x

*9.

*10.

5.2

is said to be homogeneous. Solve this equation by separation of variables, after
making the substitution y = ux.
Find the particular solution of the homogeneous differential equation
x + y + xy' = 0 satisfying the initial condition Ylx= 1 = O.
A curve goes through the point (-1, -1) and has the property that the x-
intercept of the tangent to the curve at every point P is the square of the abscissa
of P. What is the curve?

PROBLEMS OF GROWTH AND DECAY

5.21. a. Suppose the dependence of one variable, say y, on another variable,
say t, is described by an "exponential law"

y = yoert, (1)

where Yo > 0 and r are constants. Then the rate of change of y (with respect to t)
is given by the derivative

dy rr
dt = Yore.

Thus y satisfies the simple differential equation

dy
-= ry
dt '

(2)

that is, the rate of change of the variable y is proportional to the value of y. The function
err is an increasing function of t if r is positive, since then t1 < t2 implies rt1 < rt2
and hence err! < ert2; in this case, we say that y grows exponentially (with t), or that
y is an exponentially increasing function of t. On the other hand, err is a decreasing
function of t if r is negative, since then t 1 < t 2 implies rt 1 > rt 2 and hence e'tl > e

rt2
;

in this case, we say that y decays (or falls off) exponentially (with t) or that y is an
exponentially decreasing function of t.

b. Setting t = 0 in (1), we find that

Ylr=o = Yo' (3)

Thus the constant Yo is just the initial value of y, that is, the value of y at the time
t = O. In other words, (1) is the particular solution of the differential equation (2)
satisfying the initial condition (3). This can, of course, be seen directly. In fact,
separating variables in (2), we get

dy
- = rdt,
y
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so that

or

Problems of Growth and Decay

In Iyl = rt +.k,

193

(4)

where k is a constant of integration. Taking the exponential of both sides of (4),
we find that

Iyl = Cerr, (5)

where C = ek > O. But Iyl can never vanish, since Cert > O. Therefore y is either
positive or negative for all t. Since Yo > 0, by assumption, the initial condition (3)
can be satisfied only if y is positive, and then Iyl = y, C = Yo, so that (5) reduces
to (1).

c. It follows from (2) that

1 dy
r=--

y dt'

or equivalently

d
r = dt In y,

that is, r is the logarithmic derivative of y (Sec. 4.53a). Thus r is not the rate of change
of y, but rather the rate of change of y divided by the "current" value of y. The
quantity dy/dt is called the growth rate, whether it be positive or negative, while r
is called the proportional growth rate. The word "proportional" can be dropped if
r is given in percent per unit time, since it is then clear that we can only be talking
about a proportional growth rate. Sometimes r is simply called the rate, when there
is no possibility of confusion.

5.22. Population growth

a. Example. A population grows exponentially at the rate r. How long does
it take the population to double?

SOLUTION. Here r is positive and we have

(6)

where N (for "number") is the population at time t and No is the population at time
t = O. The function.N is, of course, just the particular solution of the differential
equation :

satisfying the initial condition

dN = rN
dt

(7)

(8)

Let T be the doubling time, that is, the time at which the population is twice its initial
value No. Then
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(9)

.(7')
!

Note that T is independent of the population size. Taking logarithms, we get

rT = In 2,
or

T
_ In 2 ~ 0.693--~--.

r r

Thus the doubling time is inversely proportional to the proportional growth rate r,
which makes sense ("the faster the growth, the shorter the doubling time"). Suppose
r is measured in percent per year and t in years, as in studies of human population.
Then we get the rule of thumb

69
T ~ -years.

r

For example, the average annual growth rate of the population of Brazil during the
period 1961-1968 was 3%. At this rate the population of Brazil will double in about
61 = 23 years.

b. If T is the doubling time of a population, then the population will double
every T years, as long as it is growing at the rate r. To see this, we merely note that

N(T) = erTNo = 2No,
N(2T) = er2TNo = (erT)2No = 22No = 4No,

with the help of (6) and (9), and, more generally,

N(nT) = e"rTNo = (erT)"No = 2"No.

c. The differential equation (7) merely says that the rate of change of the
population is proportional to the present size of the population. This is perfectly
plausible. In fact, on the one hand, we must have

dN = B _ D
dt '

where B is the birth rate and D the death rate. On the other hand, both Band D'are
proportional to the population size N (large cities have more maternity wards and
more cemeteries than small towns). Therefore B - D is also proportional to N.
Comparing (7) and (7'), we find that

B-D
r=~.

In other words, the proportional annual growth rate of population is just the 'per
capita excess of the birth rate over the death rate.

d. Eventually, of course, population growth must stop, due to lack of food,
spread of infectious disease, loss of fertility due to overcrowding, wars fought for
dwindling resources, or whatever. It turns out that these effects of "overpopulation"
are described remarkably well in many cases by introducing an extra term -sN2 in
the right side of (7), where s (like r) is a positive constant. The resulting "growth
equation" then becomes
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(12)

(11)dN 2- = rN - sN,
dt

instead of (7), subject to the same initial condition (8).
To solve (11), we separate variables and integrate, obtaining

f dN 2 = f dt + c = t + c,
rN - sN

where c is a constant of integration. The integral on the left is not hard to evaluate.
In fact, setting a = sir, we have

f dN - ~ f dN - ~ f [~ + a ] dN
rN - sN2 - r N(1 - aN) - r N 1 - aN

1 1 N
= ~ [In N - In 11 - aNIJ = ~ In 11 _ aNI'

Therefore (12) becomes

N
In ~1_ aNI = rt + k,

where k = rc, or

N crt\1 _ aNI = e,

where C = ek• Applying the initial condition (8), we get

C = No
11 - aNol'

so that

N
11 - aNI

No erl

11 - aNol '
where the vertical bars can now be dropped, since 1 - aN and 1 - aN 0 have the
same sign (in evaluating the integral on the left in (12), it was tacitly assumed that
1 - aN =I: 0 for all t ~ 0). Doing this and solving for N, we pnally obtain

Noert

N = 1 N (1 rl)'-ao -e
or, even more simply,

where

1 r
N1 = - =-.a s

(13)

(14)

Note that N 1 =I: No, since 1 - aN 0 =I: O.
Graphing N as a function of time, we get the "S-shaped" curve shown in Figure 1

for the case N 1 = 50N o. Note that the population growth is now restricted. In fact,
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(15)

if t is large enough, then e-rt ~ 0 and (13) is close to the "stable" population level
N 1 given by (14), where N 1 is independent of the size of the initial population. The
validity of formula (13) has been confirmed by many observations, both of human
populations and of experimental populations of bacteria, fruit flies, etc.

5.23. Radioactivity
a. Suppose it takes 2 days for 50% of the radioactivity emitted by a radio-

active substance to disappear. How long does it take for 99% of the radioactivity
to disappear?

SOLUTION. For simplicity, we assume that the radioactivity is entirely due
to a single radioactiv.e substance. It is known from physics that the rate of change
of the mass of a substance undergoing radioactive decay is proportional at each
instant of time t to the mass m = m(t) of the substance actually present; the situation
resembles that of a sterile population which is "dying off," except that an atom of
radioactive substance, unlike a person, can have an arbitrarily large "longevity."
Thus m = m(t) is the particular solution of the differential equation

dm
- = rm
dt

satisfying the initial condition

(16)

where mo is the mass of the radioactive substance present at time t = O. Since the
proportional growth rater is now negative, we replace it by - k, where k is positive.
The differential equation (15) then becomes

dm
- = -km (17)dt .

The solution of(17), subject to the initial condition (16), is, of course, just the function

(18),

describing the exponential decay of the amount of radioactive substance.
We now use the data of the problem to determine the number k, called the

proportional decay rate, or simply the decay constant. Since 50% of the radioactivity
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disappears in 2 days, we have, measuring t in days,

-2k 1
moe = :2 mo.

This implies

1
-2k = In 2'

or

1
k = -ln2.

2

With this value of k, (18) becomes

m = mOe-(r/2) In 2.

Disappearance of 99% of the radioactivity means that m = 160mo. Thus 99% of the
radioactivity will disappear after T days if t satisfies the equation

1m e-(t/2)ln 2 = - m
o 100 0,

or

T 1
--ln2 = In-.
2 100

(19)

Solving (19) for T, we get

= 2 In 100 = 4 In 10 ~ 4 2.30 ~ 133 d s
T In 2 In 2 0.69 . ay.

Actually, we could have estimated the value of T at once by the following argu-
ment: Half the radioactivity disappears in 2 days, half of what's left disappears in
2 more days, leaving one fourth the original amount after 4 days, half of what's now
left disappears after another 2 days, leaving one eighth the original amount after
6 days, and so on. Hence -b of the original amount is left after 12 days, and Th is
left after 14 days, so that lAo is left after about 13 days. You will recognize this
reasoning, based on repeated halving, as the exact analogue of the treatment of
repeated doubling, given in Sec. 5.22b.

b. The time it takes a radioactive substance to decay to one half its original
amount is called the half-life of the substance, and is independent of the amount
originally present. The connection between the half-life T and the decay constant
k is just

T = In 2 ~ 0.693
k k'

as we see at once by solving the equation

-kT 1
moe = 2mo

(20)

for T. Note that (20) is the same as formula (10) for the doubling time, with r replaced
by k.
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1. The number of bacteria in a culture doubles every hour. How long does it
take a thousand bacteria to produce a million? What is the number N of
bacteria in the culture at time t?

2. The world's population, equal to 3.6 billion in 1970, is growing exponentially
at the rate of about 2.1% per year. Estimate the world's population in the year
1984. In the year 200l.

3. An exponentially growing population increases by 20% in 5 years. What is its
doubling time?

4. One fourth of a radioactive substance disintegrates in 20 years. What is its
half-life?

5. The average amount of radium in the earth's crust is about 1 atom in 1012.
Does it make sense to assume that this is the radium left over from a larger
amount present at the time the earth was formed? The half-life of radium is
1620 years, and the age of the earth is estimated at 4.6 billion years.

6. Let N = N(t), No and N I be the same as in formula (13). Show that
(a) If No < N[, N(t) is increasing in [0, (0);
(b) If No > NI, N(t) is decreasing in [0, (0);
(c) In both cases, N(t) -> NI as t -> 00;

(d) If No < N I, N(t) has an inflection point at t = to, where N(to) = t N I'

7. Suppose consumption grows exponentially at the rate of r% per .year, while
population grows exponentially at the rate of s% per year How does the per
capita consumption behave?

8. According to Newton's law of cooling, a body at temperature T cools at a rate
proportional to the difference between T and the temperature of the surrounding
air. Suppose the air temperature is 200 (Centigrade) and the body cools from
1000 to 600 in 20 minutes. How long does it take the body to cool to 300?

9. The absorption of daylight by sea water is described by the exponential law

I = Ioe-/lX,

where lois the intensity of light at the surface of the sea and I is its intensity
at the depth x. Find the constant f.l, called the absorption coefficient, if the
intensity of light at a depth of 5 meters is one thousandth of its intensity at
the surface.

*10. Solve the growth equation

dN
- = sN2 - rN,
dt

differing from (11) in the sign of the right side. Show that in this case, cor-
responding to a birth rate proportional to the square of the population size,
the population is destined for extinction if its initial size No is less than N I = r/s.
Show that if No> N [, then N -> 00 as

1 No
t -> -In----

r No - NI

*11. Solve the growth equation

dN
dt = rN + s,
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corresponding to a birth rate proportional to the population size, together with
an "immigration" rate s.

*12. Radioactive carbon 14 ("radiocarbon"), with a half-life of 5570 years, is con-
tinually being produced in the upper atmosphere by the action of cosmic rays
on nitrogen. Incorporated in carbon dioxide, the radiocarbon is mixed into
the lower atmosphere, and is absorbed first by plants, during photosynthesis,
and then by animals eating the plants. As long as they are alive, the plants
and animals take in fresh radiocarbon, but when they die, the process ceases
and the radiocarbon in their tissues slowly disintegrates, dropping to half its
original amount in 5570 years. This fact leads to a method, called radiocarbon
dating, for estimating the ages of such things as fossil organisms and old bits
of wood and charcoal. For example, the age of a sliver of a mummy case can
be estimated by comparing the amount of radioactivity in the sliver with the
amount of radioactivity in a piece of fresh wood of the same kind and size.

Suppose a Geiger counter records m disintegrations from an old specimen
of unknown age r during the same period in which it records n (> m) disinte-
grations from a similar contemporary sample. Show that

5570 n
r = In 2 In;;; years.

*13. Heartwood from a giant sequoia tree has only 75% of the radioactivity of the
younger outer wood. Estimate the age of the tree.

5.3 PROBLEMS OF MOTION

5.31. Consider the motion of a particle moving along a straight line L. As in
Sec. 3.11, let s be the particle's distance at time t from some fixed reference point,
where s is positive if measured in a given direction along the line and negative if
measured in the opposite direction. Suppose the particle is subject to a force F,
acting along the line L. Then Newton's second law of motion states that

where m is the particle's mass and

F = rna, (1)

d2s
a = dt2

is'the particle's acceleration (Sec. 3.14a). The deceptively' simple formula (1) is actually
a second-order differential equation, with far-reaching physical consequences. As we
now illustrate by a series of examples, once F is known, we can determine the particle's
position as a function of time by solving (1), subject to appropriate initial conditions.

5.32. Examples

a. Find the motion of a particle in the absence of any external forces.
SOLUTION. In this case there are no forces, so that F = 0 in (1). It follows

that

(2)
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(3)

after cancelling out the mass, which plays no role here. We now solve (2) by two
consecutive integrations. Recal1ing that

dv
a = dt'

where

ds
v = dt

is the particle's instantaneous velocity (Sec. 3.13a), we first write (2) in the form

dv
a = dt = O.

Integrating (3), we find that

v = f ~~dt = f 0 . dt = C1,

where C1 is a constant of integration, and hence

ds
v = - = C1•dt

Integrating (5) in turn, we get

s = f ~:dt = f C1 dt + C2 = C1t + C2,

(4)

(5)

(6)

where C2 is another constant of integration.
We must now determine the constants C 1and C2• This is done by taking account

of the initial conditions of the problem, namely

where Vo and So are the velocity and position of the particle at the initial time t = O.
Setting t = 0, v = Vo in (4) and t = 0, s = So in (6), we find at once that

C1 = Vo,

Therefore (4) and (6) become

v = Vo

and

where it will be noted that s has the constant value So if Vo = O. Thus we have proved
Newton's first law of motion: Unless acted upon by an external force, a body at rest
(vo = 0) remains at rest and a body in motion (vo i= 0) continues to move with
constant velocity along a straight line. It is shown in a course on mechanics that this
conclusion remains true for a particle free to move in three-dimensional space, rather
than just along some line L.

b. Find the motion of a stone of mass m dropped from a point above the earth's
surface.
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(7)

SOLUTION. We regard the stone as a particle, neglecting its size (Sec. 3.11).
Let s = s(t) be the stone's position, as measured along a vertical.axis with the positive
direction pointing downward and the origin at the initial position of the stone. By
elementary physics, the force acting on the stone is

F = mg,

where 9 is the acceleration due to gravity (approximately 32 ft/sec2) and we neglect
the effect of air resistance. Thus, in this case, Newton's second law reduces to

dv d2sa- - -g- dt - dt2 - ,

which says that the acceleration has the constant value g. Integrating (7) twice, we
get first

(8)

and then

(9)

This time the initial conditions are

vlt;o = 0,

since the stone is "dropped" (that is, released with no initial velocity) from the point
chosen as origin. Setting t = 0, v = 0 in (8) and t = 0, s = 0 in (9), we immediately
get C1 = C2 = O. Thus, finally,

v = gt, (8')

and
1 2 (9')s = 2" gt ,

at least until the stone hits the ground.
c. Find the motion of a stone thrown vertically upward with initial velocity vo'
SOLUTION. We now find it more convenient to measure the stone's position

along a vertical axis with the positive direction pointing upward. This has the effect
of changing 9 to - 9 in (8) and (9), since the acceleration due to gravity points down-
ward. The initial conditions are now

Setting t = 0, v = vo in (8) and t = 0, s = 0 in (9), we get C1 = VO, C2 = O. Thus,
in this case, (8) and (9) reduce to

v = Vo - gt,

and
1

s = vot - 2" gt2

(recall Example 3.15, where Vo = 96 ft/sec).

(8")

(9")
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d. Find the motion of a faIling stone of mass m subject to air resistance.
SOLUTION. It is shown in physics that the effect of air resistance can be

approximated by a force

F = -kv (k > 0),

proportional to the stone's velocity and acting in the direction opposite to its motion.
The force acting on the stone is now the sum of two forces, its weight mg and the air
resistance - kv. Thus: in this case, Newton's second law (F = ma) gives

d2s dv
m dt2 = m dt = mg - kv, (10)

where s is measured downward again, as in (7). Introducing the constants

k
a = -,

m

we can write (10) in the form

dv
dt = 9 - av = -a(v - VI).

Separating variables in (11) and integrating, we find that

f~ = -afdt + c,
V - VI

where c is a constant of integration. Therefore

In Iv - vII = -at + c,
or

(11)

(12)

since v - VI < 0 (why?), where C = eC• Applying the initial condition vlt=o = 0
(the stone is dropped from rest), we get C = VI> so that (12) becomes

v = vl(l - e-at). (13)

The behavior of V as a function of time is shown in Figure 2. After falling for T

v

V1 --- ----- ------------

o 1
ex

Figure 2.
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(14)

seconds, where T is three or four times larger than 1/(1., the stone effectively attains
its terminal velocity VI> which is never exceeded. Note that VI = mg/k is proportional
to the weight of the falling object, and hence is much smaller for falling feathers than
for falling bricks! Nevertheless, feathers and bricks fall in exactly the same way in
a vacuum.

To find the stone's equation of motion, we integrate (13), obtaining

s = f v dt = VI f (1 - e-at) dt + C = VI (t + e:
a

') + c.

Applying the initial condition sir = a = 0, we find that C = - vt/(I.. Therefore

at least until the stone hits the ground.

5.33. Work and energy

a. Suppose a particle of mass m, moving along a straight line L, is acted upon
by a force F = F(s) which is a continuous function of its position s. Then, according
to Newton's second law,

dv
ma=m-=F(s)

dt '

or, by the chain rule,

dv ds dv
m ds dt = mv ds = F(s),

if we think of the velocity V as a function of s rather than t. Let

va = v(so), VI = v(sd

be the particle's velocity at two different positions So and S1. Then, integrating (14)
with respect to s from So to S1, we get

iSl dv is! iSImv -d ds = mv dv = F(s) ds,
So s So So

or

Gmv2 I = ~ mvi - ~ mV5 = L:' Ffs) ds. (15)

In other words, as a result of the action of the force, the quantity T = ~mv2, called
the kinetic energy of the particle, increases by an amount

is!W = F(s) ds,
So

(16)

called the work done by the force on the particle in moving it from So to SI.
b. In the absence of any force, F == 0 and the work (16) vanishes. Then (15)

reduces to

(17)
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so that the kinetic energy remains unchanged, or, in the language of physics, is
conserved. If F == constant, (16) becomes

W = IS' F(s) ds = F IS' ds = F(SI - so).Jso Jso
Thus, in this case, the work equals the product of the force F and the "displacement"
Sl - so, as taught in elementary physics.

c. If F = mg, So = 0, Vo = 0, we have the problem of the falling stone, as in
Example 5.32b. Then (16) gives W = mgs1 and (15) reduces to

1
2mv2 = mgs,

after dropping the subscript 1 twice. Solving this equation for v, we get

v = J2iS.
The same result can be obtained by eliminating t from formulas (8') and (9'), but here
we have used the concepts of work and kinetic energy to find the connection between
the stone's velocity and its position without bothering to express either as a function
of time.

d. Now let V(s) be any antiderivative of the function - F(s), where the existence
of V(s) is guaranteed by the assumed continuity of F(s) and Theorem 4.23a. Then it
follows from (15) and the fundamental theorem of calculus that

1 2 1 2 IS'2 mVl - 2 mvo = - V(s) So = V(So) - V(sd,

or equivalently

~ mvi + V(Sl) = ~mV6 + V(so). (18)

The function V(s) is called the potential energy (of the particle), and the sum of the
kinetic energy T = tmv2 and the potential energy V = V(s) is called the total energy
E = T + V. Thus equation (18) says that the total energy remains unchanged, or
synonymously, is conserved, in the presence of any force F = F(s). In the absence
of any force, F == 0, V == constant, and then formula (18) for the conservation of the
total energy reduces to formula (17) for the conservation of the kinetic energy. Note
that the potential energy V, being an anti derivative, is defined only to within an
arbitrary "additive constant," and hence the same is true of the total energy E =
T + V. This leads to no difficulties, since formula (18) remains valid if we replace
V(s) by V(s) + C, where C is an arbitrary constant.

e. If F = - mg and So = 0, Vo i= 0, we have the problem of the stone thrown
upward with initial velocity Vo, as in Example 5.32c. In this case, V = mgs is an
antiderivative of -F = mg, and (18) takes the form

1 2 1 2"2 mv + mgs = "2 mvo, (19)

after dropping the subscript 1 in two places. To find the maximum height reached
by the stone, we set v = 0 in (19) and solve for s, obtaining

V6s =-.
2g

The same result can be obtained by solving (8") for the time t at which v vanishes, and
then substituting this value of t into (9").
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f. Example. With what velocity Vo must a rocket be fired vertically upward in
order to completely escape the earth's gravitational attraction?

SOLUTION. According to Newton's law of gravitation, the force attracting
the rocket back to earth is given by the "inverse square law"

kMm
F = F(s) = --2-'

S
(20)

(23)

(24)

where k is a positive constant, M is the mass of the earth, m is the mass of the rocket,
and s is the distance between the rocket (regarded as a particle) and the center of
the earth. Here, of course, we choose the s-axis vertically upward along a line going
through the center of the earth, and the minus sign in (20) expresses the fact that the
force of gravitation is attractive, pulling the rocket back to earth.

The work done on the rocket by the earth's gravitational pull as the rocket
leaves the surface of the earth and goes off to a remote point in outer space is given
by the integral

W = is' F(s) ds = _ is' k~m ds = [kMm]S' = kMm _ kMm
Jso Jso s s So S1 So

where So equals R, the radius of the earth, and Sl is a very large number. Therefore

w = _ k~m, (21)

after dropping the negligibly small number kMm/sl' The work W equals the change
1 2 1 2- mVl - - mvo (22)2 2

in the rocket's kinetic energy in going from the earth's surface to outer space. Since
we are looking for the smallest value of the rocket's initial velocity that will allow
it to escape the earth's gravitational pull, we choose Vl = 0 as the rocket's final
velocity, so that the rocket arrives in outer space with its initial velocity Vo completely
lost. Equating (21) and (22), with Vl = 0, we get

1 2 kMm
"2mvo =~.

Therefore Vo is given by the formula

Vo = J2~M,
and is independent of the rocket's mass m.

To evaluate (23), we observe that the force acting on the rocket at the earth's
surface is - kMm/R2 by (20) and -mg in terms of the constant g, the "acceleration
due to gravity," which figures in terrestrial problems involving gravitation. Equating
these two expressions, we find that the "universal gravitational constant" k equals

gR2
k = M'

Substituting this into (23), we get

J29R2 M M-.:n
Vo = MR = ",2gR. (25)
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Since, to a good approximation, R = 4000 miles and 9 = 32 ft/sec2, we finally have

2.32.4000
Vo = 5280 mi/sec ~ 7.0 mi/sec

(there are 5280 feet in a mile). In the language of rocketry, the quantity Vo is called
the earth's escape velocity. A rocket fired upward with a velocity less than Vo must
eventually "fall" back to earth, unless it is "captured" by the gravitational attraction
of some other celestial body.

PROBLEMS

1. Find the equation of motion s = s(t) of a particle of mass m acted upon by a
constant force F, given that the particle is initially at rest at the point s = O.

2. A particle of mass m moves under the action of a constant force F. Suppose
the particle's position at time t = to is s = so' What velocity Vo must the
particle have at time t = to in order to arrive at the point s = slat time t = t 1?

3. Suppose a particle of mass m is subject to a force F = kt, proportional to the
time that has elapsed since the onset of the motion. Find the resulting equation
of motion, assuming that the particle starts from the point s = 0 with initial
velocity vo'

4. With what velocity must a stone be thrown vertically upward from ground
level to reach a maximum height of 64 feet? How many seconds after it is
thrown will the stone hit the ground?

5. The acceleration due to gravity on the moon is about 5 ft/sec2, as compared
with 32 ft/sec2 on the earth. Suppose a man can jump 5 feet high on the earth.
How high can he jump on the moon?

6. Which has more kinetic energy, a one-ounce bullet going 500 mi/hr or a ten-ton
truck going 1 mifhr? What happens if the bullet goes 600 mi/hr?

7. According to Hooke's law, the tension in a stretched spring equals ks, where k
is a positive constant and s is the length of the spring minus its un stretched
length. Show that the potential energy V of the stretched spring equals iks2.

8. A particle is attracted to each of two fixed points with a force proportional to
the distance between the particle and the point. How much work is done in
moving the particle from one point to another along the line connecting them?
Assume that the constant of proportionality k is the same for both points.

9. Show that to reach an altitude of h miles, a rocket must be fired vertically
upward with velocity

J 2gRh
Vo = R + h'

where 9 is the acceleration due to gravity and R is the earth's radius. Verify
that this expression approaches the value (25) as h -+ 00.

10. If a rocket is fired vertically upward with a velocity of 1 mi/sec, how high will
it rise?

11. Estimate the moon's escape velocity, given that the moon has approximately
A the radius and ir the mass of the earth.
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*12. Two men stand on the edge of a roof h feet above the ground. The first man
throws a stone downward with velocity Vo ftjsec, while the second simul-
taneously throws another stone upward with the same velocity. Show that both
stones hit the ground with the same velocity VI' but naturally at different times
tl and t2• Find VI' tl> t2 and IJ.t = t2 - tl•

*13. A spider hangs from the ceiling by a single strand of web. Suppose the spider's
weight doubles the un stretched length of the strand, stretching it from 8 to 28.

Show that to climb back to the ceiling, the spider need only do 75% of the
work required to climb an inelastic strand of length 28.



Chapter 6

FUNCTIONS OF
SEVERAL
VARIABLES

6.1 FROM TWO TO n DIMENSIONS

6.11. Rectangular coordinates in space

a. Rectangular coordinates in space are the natural extension of rectangular
coordinates in the plane (Sec. 1.7). Suppose we construct three mutually perpendi-
cular lines Ox, Oy and Oz, known as the coordinate axes, intersecting in a point 0,
called the origin (see Figure 1). Just as in the plane, each line is regarded as extending
indefinitely in both directions, and each is equipped with a positive direction, as in-
dicated by the arrowheads in the figure. The coordinate axes Ox, Oy and Oz are
called the x-axis, the y-axis and the z-axis, respectively. These axes determine three
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x
Figure 2.

v

mutually perpendicular coordinate planes, the xy-plane containing the x and y-axes,
the yz-plane containing the y and z-axes, and the xz-plane containing the x and z-axes.
In Figure 1 the yz-plane is the plane of the paper, and the positive x-axis points out
from the paper at right angles to the yz-plane.

b. We now associate three numbers with any given point P in space, by making
the following construction, analogous to the construction in Sec. 1.72: Through the
point P we draw three planes, one perpendicular to the x-axis, another perpendicular
to the y-axis, and a third perpendicular to the z-axis. Suppose that, as in Figure 2,
the first plane intersects the x-axis in the point with coordinate a, the second plane
intersects the y-axis in the point with coordinate b, and the third plane intersects the
z-axis in the point with coordinate c. Then the numbers a, band c are called the
rectangular coordinates, or simply the coordinates, of the point P. More exactly, a is
called the x-coordinate of P, b is called the y-coordinate of P, and c is called the
z-coordinate of P. Figure 2 is, of course, just the three-dimensional analogue of
Figure 10, p. 21.

c. The point P with a, band c as its x, y and z-coordinates may also be de-
noted by (a, b, c). The symbol (a, b, c) is called an ordered triple, and is a special kind
of three-element set of real numbers, namely one in which the order of the elements
matters. More generally, an n-element set of real numbers in which the order of the
elements matters is called an ordered n-tuple, and is denoted by (aI' a2, ... , an)'

d. Example. Find the distance IPIP21 between two points PI = (Xl> YI, zd and
P2 = (X2, Y2, Z2) in space.

SOLUTION. Consulting Figure 3, which generalizes Figure 11, p. 22, we find
that

IPIP2/2 = Ip1QI2 + /QP212,
by the Pythagorean theorem. Therefore

IPIP21 = v'IABI2 + IQP21
2, (1)

where we use the fact that IP IQI = IABI. But A = (XI' YI), B = (X2' Y2), regarded as
points in the xy-plane, and hence

(2)
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Chap. 6

by the formula for the distance between two points in the plane (Sec. 1.74). Sub-
stituting (2) into (1), and noting that IQP21 = IZI - z21,we finally get

IPIP21 = ~(XI - x2f + (YI - Y2)2 + (Zl - Z2)2.

For example, the distance between the points PI = (3, 1,9) and P 2 = (-1,4, - 3) is

IPIP21 = ~(3 + nz + (1 - 4)2 + (9 + 3)2 = ~42 + 32 + 122 = JT69 = 13.

6.12. By n-dimensional space, or simply n-space, we mean the set, denoted by
Rn, of all ordered n-tuples (Xl>X2, ••• , xn) of real numbers. If n = 1, we have the real
number system RI = R. Thus one-space RI is the line, two-space R2 is the plane,
and three-space R3 is ordinary three-dimensional space. Here, of course, we rely on
the one-to-one correspondence between R and the points of the line (Sec. 1.36a), and
the analogous one-to-one correspondence between R2 and the plane (Sec. 1.72), and
between R3 and space (see Prob. 1). The elements of Rn are called "points," just as
in the case of one, two and three dimensions.

The distance between two points PI = (aI' a2," ., an) and P2 = (bl, b2, ... , bn)
in n-space is defined by

IPIP21 = .j(al - blf + (a2 - b2)2 + ... + (an - bn)2,

or, more concisely, by
n

IPIP21 = L (ai - bi)2.
i= 1

(3)

When we set n equal to 1, 2 and 3 in formula (3), it reduces in turn to the formula
for the distance between two points on the line, in the plane, and in space (check this).

6.13. By a (numerical) function of n variables we simply mean a function
f(xl, X2, ••• , xn) whose domain is some subset of n-space. For simplicity, we will
usually restrict the number of independent variables Xl>X2, ••• , Xn to two or three.
Other things being equal, we write X, Y for Xl>X2 if n = 2 and x, Y, Z for Xl>X2, X3
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if n = 3, to preserve the standard labelling of the coordinate axes in the plane and
in space.

When dealing with functions of several variables Xl' X2, .•• , Xn, we often want
to be vague about the actual number of variables. We then write f(P) instead of
f(x1> X2, •.. , xn), where P = (Xl' X2, ... , Xn) is a variable point of n-space.

6.14. Next we generalize the considerations of Sec. 2.3 to the case of three
dimensions. By the solution set of the equation

F(x, y, z) = 0, (4)

where F(x, y, z) is a function of three variables, we mean the set S of all ordered triples
(x, y, z) for which (4) holds. Suppose we introduce a three-dimensional system of
rectangular coordinates, by setting up perpendicular axes Ox, Oy and Oz, as in
Sec. 6.11a, and then plot all the elements of S as points in space. These points make
up a "three-dimensional picture," called the graph of S, or, equivalently, the graph
of equation (4). The same technique can be applied to a function

z = f(x, y) (5)

of two variables. Let S be the set of all ordered triples (x, y, z) for which (5) holds.
Then, plotting all the elements of S as points in space, we get a "picture," called the
graph of S, or, equivalently, the graph of the function (5). Note that (5) is a special
case of (4), corresponding to the choice F(x, y, z) = z - f(x, y).

The graph of an equation (4) or function (5) typically looks like a "surface,"
possibly made up of several "pieces." We will often refer to these graphs as "the
surface F(x, y, z) = 0," or "the surface z= f(x, y)."

6.15. Examples

a. Graph the equation

(6)

z

Figure 4.
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SOLUTION. Since x2 + y2 + Z2 is the square of the distance between the
point (x, y, z) and the origin 0 = (0,0,0), the point (x, y, z) belongs to the graph of(6)
when the distance between (x, y, z) and 0 equals 1, and only then. Therefore the
graph of (6) is the sphere of unit radius with its center at 0, shown in Figure 4.

b. Graph the function

(7)

SOLUTION. Here every point of the circle

(C ~ 0)

corresponds to the same value of z, namely C. Equivalently, every plane z = C
(C ~ 0) parallel to the xy-plane intersects the graph of (7) in a circle, namely the
circle of radius JC (why the square root?) with its center on the z-axis. The value
C = 0 gives rise to the "degenerate circle" x2 + y2 = 0, consisting of the single
point 0 = (0,0,0). Thus the graph of (7) is the surface shown in Figure 5. This sur-
face intersects the xz-plane (y = 0) in the parabola z = x2 and the yz-plane (x = 0)
in the parabola z = y2, as we find by substituting first y = 0 and then x = 0 into (7).
It is easy to see (how?) that the surface (7) is "generated" (that is, "swept out") by
rotating either of these parabolas about the z-axis. For this reason, the surface (7)
is called a paraboloid of revolution.

z

y

x
Figure 5.

c. Graph the function

z = 1 - .Jx2 + y2 (x2 + y2 ~ 1). (8)

SOLUTION. The graph of (8) is the right circular cone shown in Figure 6, with
its vertex at the point (0,0, 1). How is this deduced from (8)?
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6.16. Regions and neighborhoods

a. In general, the domain D of a function z = f(x, y) can be an arbitrary set
of points in the xy-plane, but in the simple cases considered here D will always be
either the whole plane, or a subset of the plane bounded by one or more curves,
parts or all of which make up the boundary of D. Suppose D is connected, in the
sense that any point of D can be joined to any other point of D by a curve which
never leaves D. (For example, the map of Ohio is connected, but not the map of
Hawaii.) Then D is said tn be a region. A region is said to be closed if it contains
its boundary and open if it does not. More generally, a region may contain some
but not all of its boundary points. A region is said to be finite if it lies entirely inside
some circle x2 + y2 = r2 of sufficiently large radius r; otherwise the region is said
to be infinite. The symbol R will henceforth be used to denote a region, rather than
the real number system.

b. The domain of a function z = f(x, y) is understood to be the largest set of
points (x, y) for which the function is defined, just as in the case of one variable
(Sec. 2.15a). Thus the domain of the function

z = .J 1 - x2 _ y2

is the set of all points (x, y) such that the square root makes sense, that is, such that
x2 + y2 ~ 1 (what is the graph of the function ?). This is the finite region consisting
of the "unit circle"

(9)

and its interior. This region is closed, since it contains its boundary, namely the
circle (9). We can talk about "the region x2 + y2 ~ 1," just as we talk about "the
interval - 1 ~ x ~ 1."

On the other hand, the domain of the function

z = In (x + y) (10)
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is the set of all points (x, y) such that x + y > 0, or equivalently y > - x. Thus the
domain of (10) is the infinite region R consisting of all points lying to the right of
the line y = - x (sketch a figure). The line y = - x is the boundary of R, but is not
contained in R, since In 0 is meaningless. Therefore R is an open region.

c. Given any fixed point Po = (a, b) in the plane, let N be the set of all points
P = (x, y) such that

IPPol < b, (11)

where b is a positive number and IPPol is the distance between P and Po. In terms
of coordinates, N is the set of all points (x, y) such that

.J(x - a)2 + (y - W < b,

that is, the interior of the circle

(12)

(13)

of radius b with its center at (a, b). Since N does not contain the circle (13) itself,
N is an open region. A region of this kind is called a neighborhood of the point
Po = (a, b). Clearly N is the two-dimensional generalization of the one-dimensional
neighborhood Ix - al < b (Sec. 1.63b).

The merit of the inequality (11), as opposed to (12), is that it leaves the number
of independent variables unspecified. If n = 3, we write

Po = (a, b, c), P = (x,y, z).

Then the set N of all points P satisfying (11) is the interior of the sphere

(x - a)2 + (y - W + (z - C)2 = b2

of radius b with its center at (a, b,c). We again call N a neighborhood, this time of the
point Po = (a, b, c) in three-space. Similarly, the set N of all points P = (XI' X2" •. , xn)
in n-space satisfying the inequality (11) is the "interior" of the "n-dimensional sphere"

n

L (x - Xi)2 = b2

i= I

of radius b with its center at (aI' a2, ... , an)' Naturally we again call N a neighbor-
hood, this time of the point Po = (al> a2, ... , an) in n-space.

By a deleted neighborhood of a point Po we mean any neighborhood of Po with
the point Po itself excluded.

PROBLEMS

1. We have shown how to hnd the coordinates of a given point in R3• How does
one find the point in R3 with given coordinates?

2. If a cube has the points (1, 1, 1), (1, -1, -1), (-1, 1, -1) and (-1, -1, -1) as
four of its vertices, what are the other four?

3. Find the distance from the origin to the point
(a) (4, -2, -4); (b) (-4,12,6); (c) (12,16, -15).
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4. Verify that the points (3, -1,6), ( -1,7, - 2) and (1, - 3,2) are the vertices of a
right triangle.

5. Which of the points (J2, J2,0), (J2, J2, 1), (J2, J2, J2), (1, J3, 0), (0, J3, 1),
(-1, -J2, 1) lie on the surface of the sphere of radius 2 with its center at the
origin?

6. Show that the sphere x2 + y2 + Z2 - 4x - 6y - 2z + 13 = 0 is tangent to
the xy-plane.

7. By a surface of revolution we mean any geometrical figure in R3 generated by
rotating a plane curve about a straight line lying in its plane. Can the same
surface of revolution be generated by rotating a given plane curve about two
different axes?

8. Describe the surface of revolution obtained by rotating the line x = 0, y = a
about
(a) The y-axis; (b) The z-axis.

9. Find the piecewise linear curves in which the cone (8) intersects
(a) The xz-plane; (b) The yz-plane.

10. Justify thinking of intervals as "one-dimensional regions."
11. Write inequalities describing the finite open region bounded by the lines

x = :t 1, y = :t 1.
*12. Find the two points of the x-axis at distance 12 from the point ( - 3, 4, 8).
*13. Find the distance between the two points PI = (1,1,1,1) and P2 = (0,2,0,2) of

R4. Which is closer to the origin of four-space?
*14. What is the surface x2 + y2 = Z2?
*15. Why is the domain of the function f(x, y) = In (x2 - y2) not a region?

6.2 LIMITS AND DIFFERENTIATION

6.21. Limits and continuity

a. To define the limit of a function of several variables, we need only make
slight changes in the definition of the limit of a function of a single variable, given
in Sec. 2.44a. Thus we say that a (numerical) function f(P) of several variables,
defined in a deleted neighborhood of a point Po, approaches the limit A as P ap-
proaches Po, or that f(P) has the limit A at Po, if f(P) gets "closer and closer" to A
as P gets "closer and closer" to Po without ever coinciding with Po' This fact is
expressed by writing

or

lim f(P) = A
P-Po

f(P) ...• A as P ...• Po'

(1)

In the "e, {) language" introduced in Sec. 2.44b, (1) means that, given any e > 0, we
can find a number {)> 0 such that If(P) - AI < e whenever 0 < IPPol < {). As
in Sec. 2.44d, it is often convenient to talk about having a limit without specifying
what the limit is. Thus we say that a function f(P) has a limit at Po if there is some
nllmher A such that (P) ...• A as P -...•Po.
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b. In two dimensions, we have f(P) = f(x, y) and Po = (a, b), say. We can
then write the limit (1) more explicitly as a "double limit"

lim f(x, y) = A.
x->a
y->b

Do not make the mistake of confusing (2) with the "iterated limit"

lim {lim f(x, y)},
x-+a y-b

(2)

which means something quite different.
c. Just as in the case of a function of one variable (Sec. 2.63a), a function f(P)

of several variables, defined in a neighborhood of a point Po, is said to be continuous
at Po if

lim f(P) = f(P 0)'
P->Po

If a function f(P) is continuous at every point of a region R, we say that f(P) is
continuous in R. When we call a function continuous, without further qualification,
we always mean continuous at some point or in some region, where the context
makes it clear just what is meant.

6.22. Partial derivatives

a. Let f be a function of n variables defined in a neighborhood of a point
(xl> X2, ••• , xn). Then by the partial derivative of f with respect to Xi at (Xl> X2, .•• , xn),

denoted by the expression

af(x1, X2, ••• , xn)

aXj

we mean the limit

where Xi is given an increment L\xi, but all the other variables are held fixed, provided
this limit exists and is finite. Clearly there are n such partial derivatives, corre-
sponding to the n subscripts 1, 2, ... , n. Thinking of the symbol a/aXj as a single
entity, whose effect is to form the partial derivative with respect to Xi of any function
written after it, we can also write (3) as '

The symbol a is still pronounced "dee," even though we are now dealing with a
"curved dee." ,

b. To evaluate (3), we need only treat all the independent variables except Xj

as if they are constants. Thus no extra technique is required to calculate partial
derivatives. For example, the function

f(x, y) = xeXY
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of (x, y) = ~ (xeXY) = eXY+ xye"'Y,
ax ax

calculated by regarding y as a constant and then treating a/ax like d/dx, and

of (x, y) = ~ (xeXY) = x2exy,

oy oy
calculated by regarding x as a constant and treating %y like d/dy.

c. There are other ways of writing (3). Ifu = f(Xl' X2," ., xn), we can abbreviate
(3) to Of/OXi or au/ax;. We can also write (3) as

(4)

or simply fXI or UXI' where the subscript Xi calls for (partial) differentiation with
respect to Xi' We can go a step further, and write just

instead of (4), or simply /; or u;, where the subscript i calls for differentiation with
respect to the ith argument, whatever it be called. For example, if

u = f(r, s, t) = rs2 In t,

then ft(r, s, t), ft, Uo f3, and U3 are all ways of writing the same partial derivative

a rs2
-(rs2In t) =-.
at t

d. Partial derivatives of higher order are defined in the natural way. For
example, if z = f(x, y), we have four second partial derivatives, two of the form

and two "mixed" derivatives of the form

one obtained by differentiating z first with respect to y and then with respect to x, the
other obtained by carrying out the differentiations in the opposite order. Similarly,
if u = f(x, y, z), then

and so on.
e. Example. If

f(x, y, z) = xy In z,
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then

of xy
oz = ~

ofax = yin z,
of- = xlnzoy ,

o2f a
ox2 = ax (y In z) = 0,

o2f a
- = -- (x In z) = 0oy2 oy ,

o2f _ a (xy) xy
OZ2 - oz ~ = -?"

o2f o2f a a
ax oy = oyox = o)x In z) = oy (y In z) = In z,

o2f = o2f = ~ (xy) = ~ (x In z) = 2
oyoz oz oy oy z oz z'

o2f = o2f = ~ (xy) = ~ (y In z) = ~
ax oz oz ax ax z oz z.

Note that the value of each mixed partial derivative is independent of the order of
differentiation. It is not hard to show that this is always true for a function with
continuous first and second partial derivatives, but the proof will not be given here.

6.23. Differentiable functions and differentials

a. It will be recalled from Sec. 2.55a that if f is a function of a single variable,
and if f has a derivative f'(x) at a point x, then the expression

(
A) _ Af(x) - f'(x) Ax

a fiX - ,Ax
where Af(x) = f(x + Ax) - f(x) is the increment of f at x, approaches zero as
Ax -+ O. Therefore, if f has a derivative f'(x) at the point x, we can write the incre-
ment Af(x) in the form

Af(x) = f'(x) Ax + a(Ax) Ax,

where

lim a(Ax) = O.
ax-+O

(5)

We can also write the increment as

Af(x) = df(x) + a(Ax) Ax,

in terms of df(x) = f'(x) ~x, the differential off at the point x.
Conversely, if Af(x) can be represented in the form

Af(x) = A Ax + a(Ax) ~x, (6)

where A is a constant and (5) holds, then the derivative f'(x) exists and equals A.
To see this, we need only divide (6) by Ax and take the limit as Ax -+ 0, obtaining

f'(x) =c limY~x:2 = A + lim a(Ax) = A.
AX-O Ax AX-O



Sec. 6.2 Limite and Differentiation 219

Thus, in the case of a function f of one variable, having a differential df(x) and
having a derivative f'(x) are equivalent properties, both described by saying that
f is differentiable at x.

b. In the case of a function of several variables, the situation is rather different.
For such a function, having a differential (in a sense to be defined in a moment
for a function of two variables) and having partial derivatives are not equivalent
properties. Indeed, the mere fact of having partial derivatives does not guarantee
having a differential (it does, though, if the partial derivatives are continuous)~ On
the other hand, having a differential does guarantee having partial derivatives. Thus,
having a differential is a "stronger" requirement than having partial derivatives, and
we will use the word "differentiable" exclusively in the sense of having a differential.
These things are worth knowing, but, with the exception of Theorem 6.23d, we omit
the proofs, which are tedious and rather technical. They can be found in a more
advanced course, together with the proof alluded to at the end of Sec. 6.22e.

c. Definition. Given a function z = f(x, y) of two variables, by the increment
of f at the point (x, y) we mean the expression

!!if(x, y) = f(x + !!ix, y + !!iy) - f(x, y). (7)

Suppose that for every point (x + !!ix, y + !!iy) in some neighborhood of (x, y), we
can write !!if(x, y) in the form

!!if(x, y) = A !!ix + B !!iy + a(!!ix, !!iy)!!ix + f3(!!ix,!!iy)!!iy, (8)

analogous to (6), where A and B are constants, and

lim a(!!ix, !!iy) = 0,
dX->O
dy->O

lim f3(!!ix,!!iy) = O.
4X-+O
dy ...•O

(9)

Then we say that f has a differential or is differentiable at (x, y), and the expression
A !!ix + B !!iy in (8) is called the (total) differential off at (x, y), denoted by df(x, y),
so that

df(x, y) = A !!ix + B !!iy.

For brevity, we will often write !!if and df for !!if(x, y) and df(x, y).
d. THEOREM. If f is d!fferentiable at (x, y), then

(1) f is continuous at (x, y);
(2) f has partial derivatives fx and /y at (x, y);
(3) The increment !!if can be written in the form

(10)

!!if(x, y) = fAx, y)!!ix + fy(x, y)!!iy + a(!!ix, !!iy)!!ix + f3(!!ix,!!iy)!!iy; (11)

(4) The differential df can be written in the form

df(x, y) = fAx, y)!!ix + /y(x, y) !!iy.

Proof. It follows at once from (8) and (9) that

lim !:1j(x, y) = 0,
Ax-O
dy ...•O

and therefore

lim f(x + !!ix,y + !!iy) = f(x, y),
Ax-O
dy ...•O

(12)
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which expresses the continuity of f at (x, y) in increment notation. Setting Ay = 0
in (8), we get

f(x + Ax, y) - f(x, y) = A Ax + IX (Ax, 0) Ax,

with the help of (7), and hence

fAx, y) = lim f(x + AX;) - f(x, y) = A + lim IX(Ax,O) = A
8.x-O X .1x-O

(see Prob. 1), that is, the partial derivative fx(x, y) exists and equals A. Similarly,
setting Ax = 0 in (8), we get

f(x, y + Ay) - f(x, y) = BAy + {3(0, Ay) Ay,

and hence

/y(x, y) = lim f(x, y + Ay) - f(x, y) = B + lim {3(0,Ay) = B,
~y~O Ay ~y~O

so that fy(x, y) exists and equals B. Replacing A and B in (8) and (10) by fAx, y) and
/y(x, y), we get (11) and (12). 0

e. It follows from (12) that

ox ox
dx = ox Ax + oy Ay = 1 . Ax + O' Ay = Ax,

oy oy
dy = - Ax + '" Ay = 0 . Ax + 1 . Ay = Ay.ox uy

In other words, the increments and the differentials of the independent variables are
equal (recall Sec. 2.56a). Thus we can write (12) in the form

df(x, y) = fAx, y) dx + /y(x, y) dy,

or, even more concisely, as

of of
df = ox dx + oy dy. (13)

!

The generalization of (13) to the case of a function f(x1> X2, ... , xn) of n variables
is just

(13')

and is proved in much the same way (we omit the details).
f. Example. Estimate the quantity

Q = J(1.98)2 + (4.02)2 + (3.96)2.

SOLUTION. If

then

Q = f(x + Ax,y + Ay,z + Az),
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where

Therefore

x = 2, y = 4,
Ax = -0.02, Ay = 0.02,

-~
"-~- ,~

Limits and Differentiation --""""'221'--,

z = 4,
Az = -0.04.

Q = f(x, y, z) + Aj(x, y, z) ~ f(x, y, z) + df(x, y, z),

where we have approximated the increment Af by the differential df. Using (13')
with n = 3, we have

_ of of of d = x dx + y dy + z dz
df - " dx + " dy +" z / 2 2 2'ux uy uZ "I x + y + z

and therefore

/ 2 2 2 2(-0.02) + 4(0.02) + 4( -0.04) 6 0.12 598
Q ~ "12 + 4 + 4 + ---====:::----== - -6 = ...J22 + 42 + 42

An exact calculation shows that

Q = .J35.7624 = 5.9802

to four decimal places.

PROBLEMS

1. Show that formula (2) implies

lim f(x, b) = A, lim f(a, y) = A.
x-a y-b

2. Show that

I. x + y
lm--
x-o X - Y
y-O

does not exist.
3. Does (x, y) ~ (a, b) imply x ~ a, y ~ b, and conversely? Justify your answer.
4. Suppose f(x, y) is independent of y, so that f(x, y) == g(x), and suppose g(x) is

continuous at the point a. Show that f(x, y) is continuous at the point (a, b)
for arbitrary b.

5. Suppose f(x, y) is independent of x, so that f(x, y) == h(y), and suppose h(y) is
continuous at the point b. Show that f(x, y) is continuous at the point (a, b)
for arbitrary a.

6. Let g(x) be continuous at the point a, while h(y) is continuous at the point b.
Show that the functions f(x) :!: g(y), f(x)g(y) and f(x)/g(y) are all continuous
at (a, b), provided that g(b) =I- 0 in the last case.

7. Use continuity to evaluate

II

I
. xy

(a) 1m 2 2;
x-I X + Yy-I

(b) lim eXY;
x-o
y-O
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8. Define and evaluate the limit

9. Where is the function f(x, y) = l/JXY continuous?
10. Where does the function

xyz
f(x, y, z) = 1 2 2

- X - Y

fail to be continuous?
11. Find oz/ox and oz/oy if

Chap. 6

x+y
(b) z = --;

x-y

(a) u = eXYZ
;

12. Find ou/ox, ou/oy and ou/oz if

(b) u = In xy;
z

13. Find

(c) u = (xyy.

03U . 03U
(a) ox2 oy If u = (x + y) In (xy); (b) ox oy oz if u = eXYz.

14. Verify by direct calculation that 02Z/0X oy = 02Z/oy ox if
(a) z = In (x + y); (b) z = In (xy).

15. Verify directly from the definition of the differential that each of the following
functions is differentiable in the whole xy-plane:
(a) f(x, y) = x2 + y2; (b) f(x, y) = xy.

16. Find the (total) differential of
(a) z = xy - X2y3 + x3y; (b) z = yX.

17. Use differentials to estimate
(a) .j(2.97)2 + (4.05)2; (b) (1.002)(2.003)2(2.999)3.

*18. Verify that the function

1u = In-_-_-_-_-_-_
.jx2 + y2

satisfies the equation

known as Laplace's equation.
Comment. An equation like this, involving one or more partial derivatives

of a function, is called a partial differential equation, as opposed to the ordinary
differential equations considered in Chapter 5.

*19. Is the function f(x, y) = .j x2 + y2 differentiable at the origin?
*20. According to the perfect-gas law, the pressure p, the volume V and the tem-
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perature T (in degrees Kelvin) of a confined gas are related by the formula
p V = kT, where k is a constant of proportionality. Show that

OVoT op _ 1
oTapoV - - .

Comment. This formula should cure you of any temptation to treat partial
derivatives like fractions.

6.3 THE CHAIN RULE

6.31. a. We now generalize Theorem 2.82a on the derivative of a composite
function to the case of a function of n variables. For simplicity, we choose n = 2,
just as in Theorem 6.23d, but the result is readily extended to the case n > 2.

THEOREM (Chain rule). Suppose x and yare functions of a single variable, both
differentiable at t, and suppose f is a function of two variables, differentiable at (x(t), y(t».
Then the composite function F, defined by F(t) == f(x(t), y(t», is differentiable at t,
with derivative

F'(t) = fAx(t), y(t) )x'(t) + /y(x(t), y(t) )y'(t). (1)

Proof. The proof is the natural generalization of the proof of Theorem 2.82a.
Let z = f(x, y). Since x and yare differentiable at t, then, as in Sec. 6.23a,

L\x = x(t + L\t) - x(t) = [x'(t) + A.(L\t)] L\t,
L\y = y(t + L\t) - y(t) = [y'(t) + jl(L\t)] L\t,

(2)

where A.(L\t) -+ 0, jl(L\t) -+ 0 as L\t -+ O. Moreover, since f is differentiable at (x(t), y(t»,
then, by Theorem 6.23d,

L\z = f(x + L\x, y + L\y) - f(x, y)
= [fx(x, y) + a(L\x, L\y)] L\x + [/y(x, y) + (J(L\x, L\y)] L\y,

where we temporarily drop the argument t in many places, and a(L\x, L\y), (J(L\x, L\y)
satisfy the conditions (9), p. 219. Substituting the expressions for L\x and L\y into
the formula for L\z, we get

L\z = [fAx, y) + a(L\x, L\y»[x'(t) + A.(L\t)] L\t
+ [/y(x, y) + (J(L\x, L\y)] [y'(t) + jl(L\t)] L\t. (3)

It follows from the expressions for L\x and L\y (or from the continuity of x and yat t)
that L\t -+ 0 implies L\x -+ 0, L\y -+ 0, so that L\t -+ 0 implies not only A.(L\t) -+ 0,
jl(L\t) -+ 0, but also a(L\x, L\y) -+ 0, (J(L\x, L\y) -+ O. Therefore, dividing (3) by L\t and
taking the limit as L\t -+ 0, we find that

lim ~z = lim [fAx, y) + cx(L\x, L\y)] lim [x'(t) + A.(L\t)]
4.'-+0 l.1t 4,-+0 4,-+0

+ lim [/y(x, y) + (J(L\x, L\y» lim [y'(t) + jl(L\t)]
4.,-+0 4,-+0

= fAx(t), y(t) )x'(t) + /y(x(t), y(t) )y'(t), (4)
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where we reinstate the argument t in four places. On the other hand,

Chell. 6

~z = f(x + ~x, y + ~y) - f(x, y)
= f(x(t) + x(t + ~t) - x(t), yet) + yet + M) - y(t)) - f(x(t), y(t))
= f(x(t + ~t), yet + ~t)) - f(x(t), y(t)) = F(t + ~t) - F(t),

which implies

lim ~z = lim F(t + ~t) - F(t) = F'(t).
dt~O ~t M~O ~t

Comparing (4) and (5), we get (1). D
b. Formula (1) can be written more concisely as

dF af dx af dy-=--+--.
dt ax dt ay dt

We can simplify (6) even further by changing F to f:

df af dx af dy-=--+--.
dt ax dt ay dt

(6)

(7)

After all, since f is a function of two variables, the fact that we write an ordinary
derivative df/dt on the left in (7) means that each argument of f is being thought of
as a function of a single variable, namely t. With this understanding, we can do
without the extra symbol F, which was introduced only to make the distinction
between f(x, y) and f(x(t), y(t)) more explicit.

c. The case where x and yare functions of several variables presents no diffi-
culties. For example, suppose x = x(t, u), y = yet, u), where x and yare differentiable
functions of two variables. If u is held fixed, x and y reduce to functions of a single
variable t, and we can apply the theorem without further ado, obtaining

af afax af ay-=--+--
at ax at ay at'

(8)
i

where all three ordinary derivatives in (7) now become partial derivatives. Similarly,
holding t fixed, we get

af afax af ay-=--+--.
au ax au ayau

Here again we might have introduced a composite function F, defined by

F(t, u) == f(x(t, u), yet, u)),

(8')

but it is simpler to regard f(x, y) and f(x(t, u), yet, u)) as being the same function,
written in terms of different independent variables.

d. The generalization of formula (7) to the case of a function f(x1, x2, .•. , xn)

whose n arguments depend on a single new independent variable t is given by

and is proved in much the same way (we omit the lengthy details). Similarly, the
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(j = 1,2, ... , m) (10)

(11)

generalization of (8) and (8') to the case of a function f(xl' X2, , .. , xn) whose n argu-
ments depend on m new independent variables t1>t2, ... , tm is given by

of = of OXl + of OX2 + ... + of OXn = I of OXi
otj OXl otj OX2 otj OXn otj i= 1 OXi otj

The last two formulas are the "master" chain rules, of which all previous versions
(including the first formula in Sec. 2.82c) are merely special cases. Note the following
common features of (9) and (10): :

!

(1) The right side contains n terms, one for each "intermediate" variable
Xh X2, ••• , Xn;

(2) Each of these terms is a product of two derivatives, with the interme-
diate variable appearing in the denominator of one derivative and in
the numerator of the other. (

I

6.32. Examples

a. Let f be any differentiable function of two variables. Prove thatthe function
u = f(x - y, y - z) satisfies the partial differential equation i

, I

OU OU ou _ 0
ox + oy + OZ - .

SOLUTION. Let s = x - y, t = y - z. Then, by the chain rule,

OU OU os ou 0t OU
ox = os ox + ot ox = os'
ou ou os OU ot OU OU I

oy = os oy + ot oy = - os + ot'

OU OU os OU ot OU
OZ = os oz + ot OZ = - ot '

and adding these three equations, we get (11). Here, of course, we have used the
formulas

os 0- = - (x - y) = 1,
ox ox

os 0- = - (x - y) = -1,oy oy

os 0
- = - (x - y) = 0,
oz oz

iot 0 I

ox = ox (y - z) ,= 0,

ot 0 '
oy = oy (y - z) ,= 1,

at a
oz = OZ (y - Z)= -1.

F(x, y) = 0

b. Given a function F(x, y) of two variables, suppose the equation
i
i (12)

defines y as an "implicit" function of x, in the sense that there exists a function y = y(x)
such that

F(x, y(x)) = 0
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for all x in some interval I. Then, assuming that the functions F(x, y) and y(x) are
both differentiable, we can use the chain rule to differentiate (12) with respect to x:

dF(x, y) dx dy dy~ = FAx,y) dx + Fix,y) dx = Fx(x,y) + Fy(x,y) dx = O. (13)

Solving (13) for dy/dx, we get

, dy
y=-dx

FAx,y)
- Fix, y)'

(14)

provided that Fy(x, y) =1=O. This is, of course, just a more official version of the
technique of implicit differentiation introduced in Sec. 2.83d. For example, the
~~oo I

x2 _ xy + y3 = 1

considered there is of the form (12) if

F(x, y) = x2 - xy + y3 - 1.

We then have

FAx,y) = 2x - y,

so that (14) becomes

, 2x - y
y = 3 2'

X - Y

which is precisely formula (12), p. 86.
c. The technique of implicit differentiation can also be used to calculate partial

derivatives. Thus, given a function F(x, y, z) of three variables, suppose the equation

F(x, y, z) = 0 (15)

defines z as an "implicit" function of x and y, in the sense that there exists a functi6n
z = z(x, y) such that

F(x, y, z(x, y)) = 0

for all (x, y) in some region R. Then, assuming that the functions F(x, y, z) and z(x, y)
are both differentiable, we can use the chain rule to differentiate (15) with respect
to x and y (dropping arguments for simplicity):

since

of ax oy oz oz
~=~~+~~+~~=~+~~=~
of ax oy oz oz
~=~~+~~+~~=~+~~=~

(16)

(16')

ax = oy = 1,
ax oy

ax = oy = 0
oy ax .
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Solving (16) and (16') for az/ax and az/ay, we get
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azz=-=
x ax

FAx, y, z)
Fz(x, y, z)'

azz=-=
y ay

Fy(x, y, z)
F.(x,y, z)'

(17)

s x Y
(b) z = In;-, s = -, t == -.

t y x

provided, of course, that F.(x, y, z) :f- O.
d. Given that

e - xy - 2z + eZ = 0,

find az/ax and az/ay.
SOLUTION. Here F(x, y, z) is just the left side of (18). Therefore, by (17),

az ye-xy az xe-xy,
zx = ax = eZ _ 2' Zy = ay = eZ - 2'

provided that z :f- In 2.

PROBLEMS

1. Find dz/dt by both the chain rule and by direct substitutioh if
(a) z = x2 + xy2, X = et, y = l/t;
(b) z == eU+v In (u + v), u = 2t2, v = 1 - 2t2

2. Find az/ax and az/ay in two different ways if

(a) z = u + v2, u == x2, V = In (x + y);

(18)

(c) .Jx - y;
t

3. Given that z == f(x, y), express az/ax and az/ay in terms :of az/au and az/av if
(a) u == px + qy, v == rx + sy; (b) u = xy, v = y/x.

4. Given that .

Z2 - 2xyz + 3 = 0,

find Zx = az/ax and Zy = az/ay. Evaluate these derivatives at the point x = 1,
y=2 !

5. A function f(x, y) with domain D is said to be homogeneous of degree k if (x, y) ED
implies (tx, ty) E D for all t > 0 and if

f(tx, ty) = tkj(x, y) (19)

for all (x, y) E D and t > O. Show that each of the following functions is homo-
geneous, and find its degree:

(a) x2 + xy + y2; (b) .Jx2 + y2;

(d) In~'y'
1

(e) --.
x+y

6. Show that if f(x, y) is homogeneous of degree k and differentiable at every point
of its domain, then ,I

xfx(x, y) + yfy(x, y) = kf(x, y), (20)

a result known as Euler's theorem on homogeneous functions. Verify by direct
calculation that each of the functions in the preceding problem satisfies (20).*,. Let !

x2 + 2y2 + 3z2 + xy - z - 9 = O.
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Use repeated implicit differentiation to find o2zjox2, o2zjoxoy, o2zjoyox and
o2zjoy2 at the point x = 1, y = -2, z = 1.

*8. Show that if f is continuous in [a, b] and if a ::::;u(x) ::::;v(x) ::::;b, then

di~ ~ ~-d f(t) dt = f(v(x)) -d - f(u(x)) -d 'x u(x) X X

provided that u and v are differentiable.

6.4 EXTREMA IN n DIMENSIONS

6.41. a. In this section we favor the notation X = (Xl' x2, ••• , xn) for a vari-
able point in n-space, reserving the symbol P for a fixed point of n-space. Global
and local extrema of a function f(X) = f(x1> X2, ... , xn) of n variables are defined
exactly as in Sees. 3.32a and 3.61b, with x, p and q replaced by n-dimensional points
X, P and Q, respectively. As in Sec. 3.62b, if f(X) has a local extremum at P, the
extremum is said to be strict if f(X) "# f(P) for all X "# P in some neighborhood of
P, that is, for all X in some deleted neighborhood of P (Sec. 6.16c).

In Rn we have the following analogue of Theorem 3.32c, which we state without
proof:

THEOREM. Iff is continuous in a finite closed region R, then R contains points
P and Q such that

f(Q) ::::;f(X) ::::;f(P)

for all X E R. In other words, f has both a maximum and a minimum in R, at the points
P and Q, respectively.

For example, the function

.!(x, y) = ~ - y2, (1)

whose graph is the upper half of the sphere shown in Figure 4, p. 212, has a global
minimum, equal to 0, at every point of the circle x2 + y2 = 1, but no local minima
(why not?), and both a global maximum and a strict local maximum, equal to 1,
at the origin 0 = (0,0). As another example, the function

(2)
whose graph is the paraboloid of revolution shown in Figure 5, p. 212, has both a
global minimum and a strict local minimum, equal to 0, at the origin 0,but no global
or local maxima. This can be seen by inspection of Figures 4 and 5, and will be verified
in Sec. 6.42 by using partial differentiation.

b. There is a natural generalization of Theorem 3.63a for functions of several
variables:

THEOREM. If f(X) = f(xl, X2, ... , xn) has a local extremum at a point P =
(a1>a2, ... , an), then either f(X) is nondifferentiable at P, or the partial derivatives of
f(X) all vanish at P:

of(P) _ of(P) _ ... _ of(P) _ 0
aX

l
- OX2 - - oXn - . (3)

Proof. Obviously, f(X) is either nondifferentiable at P or differentiable at P.
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In the latter case, the partial derivatives of I(X) at P all exist, by the natural general-
ization of Theorem 6.23d to the case of n variables. But then all n functions

(4)

. of a single variable are differentiable, the first at ai' the second at a2, and so on,
with derivatives

(5)

The first of the functions (4) has a local extremum at al> the second has a local
extremum at a2, and so on (why?). Therefore, applying Theorem 3.63a n times, we
find that the left sides of all n equations (5) vanish. Butthen (3) holds.

Note that the theorem reduces to Theorem 3.63a if n = 1. 0
c. By analogy with Sec. 3.63c, by a critical point of a function 1of n variables

we mean either a point where 1is nondifferentiable or a point where the condition (3)
holds, and by a stationary point of1we mean a point where (3) holds. Thus a critical
point of 1 is either a point where 1 is nondifferentiable or a stationary point of I.
According to the theorem, if1has a local extremUDi at P, then P is a critical point
of I. On the other hand, just as in the case of one variable (Sec. 3.63c), if P is a critical
point of I, there is no necessity for 1 to have a local eXtremum at P. For example,
consider the function

The partial derivatives

(6)

01
ax = 2x,

01
oy = -2y

vanish at the origin 0 = (0,0), which is therefore a critical point of I, in fact a
stationary point. But 1does not have a local extremum at O. In fact,

so that, by the second derivative test for functions of a single variable (Theorem 3.65a),
the function I(x, 0) has a local minimum at 0, while the function 1(0, y) has a local
maximum at 0, and this obviously prevents I(x, y) from having either a local mini-
mum or a local maximum at O.

Thus what we really want are conditions on a function f which compel f to
have a local extremum at a given point P. For the case ?f a function of two
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variables such conditions are given by the following t'¥o-dimensional generalization
of Theorem 3.65a, which we state without proof:

THEOREM. Suppose f(x, y) has continuous second partial derivatives in a neigh-
borhood of a critical point P = (a, b), and let

B _ 82f(P)
- 8x 8y'

c = 82f~),
8y

Then f(x, y) has a strict local maximum at P if D > 0, A < 0, and a strict local minimum
at P if D > 0, A > 0, but no extremum at P if D < O.

If D = 0, there mayor may not be an extremum at P. For example, D = 0 at
the origin 0 = (0,0) if f(x, y) = x2 + y4 or if f(x, y) = x2 + y3, but in the first case
the function f(x, y) clearly has a local minimum at 0, since it vanishes at 0 and is
positive everywhere else, while in the second case f(x, y) has no extremum at 0, since
f(O, y) = y3 is increasing in the interval - 00 < y < 00.

6.42. Examples

a. The function (1) is differentiable for x2 + i < 1, with partial derivatives

if x if y
8x = .J 1 - x2 - i' 8y = ";-1-_-x-2-_-y-2

Therefore, by Theorem 6.41b, the only critical point of f in the open disk x2 + y2 < 1
is at the point 0 = (0,0), where these partial derivatives vanish. Moreover, as you
can easily verify,

B = 82f(0,0) = 0,
8x 8y

It follows from Theorem 6.41c that f has a strict local maximum, equal to 1, at the
point 0, as already observed.

b. The function (2) is differentiable in the whole xy-plane, with partial deriva-
tives

8f
-= 2x
8x '

8f
8y = 2y.

Again the only critical point of f, this time in the whole plane, is at the origin 0 =
(0,0). We now have

B = 82f(0,0) = 0
8x 8y ,

Therefore, by Theorem 6.41c, f has a strict local minimum, equal to 0, at the origin.
Actually, this fact is obvious without making any calculations at all, since the function
f is positive everywhere except at the origin, where it vanishes.

c. Inspection of Figure 6, p. 213, shows that the function

f(x, y) = 1 - .Jx2 + y2

has both a global maximum and a strict local maximum, equal to 1, at the origin
o = (0,0). Therefore, by Theorem 6.41b, 0 is a critical point of f, but this time not
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i

of(O, 0) = lim f(O + Ax, 0) - f(O, 0) = -lim ~
aX ;!X"'O Ax ;!x ..•o' Ax

I

because 0 is a stationary point of f, but because f is nondifferentiable at O. In fact,
the derivative

fails to exist, for the reason given in Sec. 2.45e, and the same is ,true of the derivative
of(O, O)JOy.

d. Find the local extrema of the function

f(x, y) = x3 + l - 3xy.

SOLUTION. Solving the system

of 2- = 3x - 3y = 0,ax
of- = 3y2 - 3x = 0,oy :

we find that f has two critical points, namely (0,0) and (1, 1). Since

02f 02f 02f
A = - = 6x B = -- = - 3 C = -,- = 6yox2' ax oy , oy2'

we have

at (0, 0), and

A = 0,

A = 6,

B = -3,

B = -3,

C = 0,

C = 6,

D = AC - B2 = -9

D = AC - B2 = 27

at (1, 1). It follows from Theorem 6.41c that f has no extremum at (0, 0) and a strict
local minimum, equal to -1, at (1, 1).

e. Find the brick of largest volume with a given surface area 2c.
SOLUTION. Let x be the length, y the width and z the height of the brick.

Then the brick has volume

and surface area

v = xyz (7)

2(xy + xz + yz) = 2c

(there are two faces of area xy, two of area xz and two of area yz). Thus our problem
is to find the largest value of (7), subject to the "side condition" or "constraint"

xy + xz + yz - c = O.

Suppose we solve (8) for z, obtaining
c - xyz =---.
x+y

Substituting (9) into (7), we then get

(8)

(9)

c - xy
V = xy --, (10)

x+y
and we can solve the problem by maximizing (10) as a function of the two variables
x and y. This approach leads to no particular difficulties (see Probs. 9 and 10), but
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we now solve the problem by another method, which is both more elegant and of
interest in its own right.

Suppose we multiply the constraint (8) by a new variable A,called a Lagrange
multiplier, and add the result to (7), obtaining a new function

V* = xyz + A(xy + xz + yz - c) (11)

(12)

(13)

of four variables x, y, z and A. We then look for local extrema of V*, by the usual
technique of setting the partial derivatives of V* equal to zero:

oV*
ox = yz + A(Y + z) = 0,

oV*
oy = xz + A(x + z) = 0,

oV*az = xy + A(x + y) = 0,

oV*-aJ: = xy + xz + yz - c = O.

The fact that we get back the constraint (8) as the last of these equations is, of course,
essential to the success of the method. Suppose the four equations (12) can be solved
for Aas a function of x, y and z. Then, substituting Aback into the first three equa-
tions, we get three equations in x, y and z, whose solutions are just the values of x, y
and z for which the original function V achieves its local extrema, subject to the
constraint (8). To see this, we merely observe that if the equations (12) hold, then
the constraint (8) is automatically satisfied, so that the term in parentheses in (11)
vanishes, and the "unconstrained extrema" of V* reduce to the "constrained extrema"
of V.

We now solve the equations (12) for A. To this end, we multiply the first equa-
tion by x, the second by y, and the third by z. We then add the results and invoke
the fourth equation, namely the constraint, obtaining

3xyz + 2A(xy + xz + yz) = 3xyz + 2Ac = 0,

which determines A as a function of x, y and z:

1 = _ 3xyz
A 2c .

Substituting (13) back into the first three equations (12), we get

yz [1 - ~: (y + Z)] = 0,
xz [1 - ~~ (x + Z)] = 0,
xy [1 - ~; (x + y)] = 0,

or equivalently,

3x
2c (y + z) = 1,

3y
2c (x + z) = 1,

3z
2c (x + y) = 1, (14)
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since x, y and z are nonzero, because of their physical meaning. The first and second
of the equations (14) imply x(y + z) = y(x + z) and hence x = y, while the second
and third imply y(x + z) = z(x + y) and hence y = z, so that

x = y = z. (15)

Substituting (15) into the constraint (8), we get 3x2 = C. It follows that

x = y = z = ~. (16)

It is "physically obvious" that the function V must have a maximum, rather than a
minimum, at the point (16), since there are long, skinny bricks with surface area 2c
which have "arbitrarily small" volume (see Prob. 5). Thus, finally, we find that the
brick of largest volume with surface area 2c is the cube of side (cj3)1/2 and volume
(cj3)3/2.

PROBLEMS

1. By investigating all critical points, find the local extrema, if any, of
(a) z = 3x + 6y - x2 - xy + y2; (b) z = x2 - xy + y2 - 2x + y;
(c) z = 2x3 - xy2 + 5x2 +"y2.

2. Do the same for
(a) z = 2x3 + xy2 - 216x; (b) z = 3x2 - 2xJY + Y - 8x + 8;
(d) z = (x - y + 1)2.

3. Find the global extrema of the function z = x2 - y2 in the closed disk
x2 + y2 :::;;4.

4. Find the global extrema of the function z = (2x2 + 3/)e-X2_y2 in the closed
disk x2 + y2 :::;;1.

5. Let V be the same as in Example 6.42e. Show that V -> 0 as z -> 00.
6. Suppose that in Example 6.42e we subtract A.times the constraint (8) from the

function (7), obtaining the new function

V* = xyz - A.(xy + xz + yz - c)

instead of (11). Does this have any effect on the final answer?
7. Use a Lagrange multiplier to show that cn is the largest value of the product

of n positive numbers Xl' X2' •.• , Xnwith a given sum nco
*8. Use a Lagrange multiplier to show that

n/ Xl + X2 + ... + xnV X1X2... xn :::;; --------
n

for arbitrary positive numbers Xl' X2, ... , xn, thereby generalizing Sec. 1.4,
Problem 14.

*9. Solve Example 6.42e by maximizing (10).
*10. Use Theorem 6.41c to confirm that the function V = xyz has a strict local

maximum at the point (16), subject to the constraint (8).
*11. Use a Lagrange multiplier to derive formula (11), p. 34, for the distance d

between a point Pl = (Xl' Yl) and the line Ax + By + C = o.
*12. Suppose a firm produces two commodities. Then the total cost to the firm of

producing a quantity Ql of the first commodity and a quantity Q2 of the second
commodity is some function of Ql and Q2' called the cost function and denoted by



234 Functions of Several Variables Chap. 6

c(Q1> Q2)' There are now two marginal costs, MC1(Ql, Q2) = ac(Ql, Q2)/aQ1>
the marginal cost of the first commodity, and MCiQl' Q2) = ac(Q1> Q2)/aQ2,
the marginal cost of the second commodity. This is, of course, just the natural
extension of the considerations of Sec. 3.22a to the case of a two-commodity
firm.

Suppose the firm's cost function is

C(Ql, Q2) = 3Qi + 2Ql Q2 + 3Q~.

Find the marginal costs MCI(Ql, Q2) and MC2(Ql, Q2)' Suppose further that
the two commodities are sold at predetermined prices PI and P2, chosen to
make them sell in a competitive market. Write an expression for the firm's
profit TI(Ql' Q2), which is now a function of two variables. What output levels
of the two commodities maximize this profit? Verify that your answer actually
leads to a maximum. What condition must the prices satisfy?

*13. In the preceding problem, suppose profit is to be maximized subject to a con-
straint of the form Ql + Q2 = q > O. For example, an automobile manu-
facturer may want to make a given total number of sedans and station wagons.
What output levels maximize the profit in this case? What condition must
now be satisfied by the prices and the number q?



TABLES

Table 1. GREEK ALPHABET

Letter Name Letter Name

A ex Alpha Nv Nu
B p Beta a ~ Xi
r I' Gamma 00 Omicron
Ii. fJ Delta nrc Pi
E e Epsilon P p Rho
Z , Zeta I: (J Sigma
H rt Eta T 't Tau
e fJ (9) Theta Y u Upsilon
I I Iota lI> cp (4)) Phi
K Ie Kappa X X Chi
A A Lambda 'J!l/J Psi
Mil Mu Ow Omega
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Table 2. EXPONENTIAL FUNCTIONS

x eX e-x x eX e-x

0.00 1.0000 1.0000 2.5 12.182 0.0821
0.05 1.0513 0.9512 2.6 13.464 0.0743
0.10 1.1052 0.9048 2.7 14.880 0.0672
0.15 1.1618 0.8607 2.8 16.445 0.0608
0.20 1.2214 0.8187 2.9 18.174 0.0550

0.25 1.2840 0.7788 3.0 20.086 0.0498
0.30 1.3499 0.7408 3.1 22.198 0.0450
0.35 1.4191 0.7047 3.2 24.533 0.0408
0.40 1.4918 0.6703 3.3 27.113 0.0369
0.45 1.5683 0.6376 3.4 29.964 0.0334

0.50 1.6487 0.6065 3.5 33.115 0.0302
0.55 1.7333 0.5769 3.6 36.598 0.0273
0.60 1.8221 0.5488 3.7 40.447 0.0247
0.65 1.9155 0.5220 3.8 44.701 0.0224
0.70 2.0138 0.4966 3.9 49.402 0.0202

0.75 2.1170 0.4724 4.0 54.598 0.0183
0.80 2.2255 0.4493 4.1 60.340 0.0166
0.85 2.3396 0.4274 4.2 66.686 0.0150
0.90 2.4596 0.4066 4.3 73.700 0.0136
0.95 2.5857 0.3867 4.4 81.451 0.0123

1.0 2.7183 0.3679 4.5 90.017 0.0111
1.1 3.0042 0.3329 4.6 99.484 0.0101
1.2 3.3201 0.3012 4.7 109.95 0.0091
1.3 3.6693 0.2725 4.8 121.51 0.0082
1.4 4.0552 0.2466 4.9 134.29 0.0074

1.5 4.4817 0.2231 5 148.41 0.0067
1.6 4.9530 0.2019 6 403.43 0.0025
1.7 5.4739 0.1827 7 1096.6 0.0009
1.8 6.0496 0.1653 8 2981.0 0.0003
1.9 6.6859 0.1496 9 8103.1 0.0001

2.0 7.3891 0.1353 10 22026 0.00005
2.1 8.1662 0.1225
2.2 9.0250 0.1108
2.3 9.9742 0.1003
2.4 11.023 0.0907



Table 3. NATURAL LOGARITHMS

n In n n In n n In n

0.0 4.5 1.5041 9.0 2.1972
0.1 *7.6974 4.6 1.5261 9.1 2.2083
0.2 *8.3906 4.7 1.5476 9.2 2.2192
0.3 *8.7960 4.8 1.5686 9.3 2.2300
0.4 *9.0837 4.9 1.5892 9.4 2.2407

0.5 *9.3069 5.0 1.6094 9.5 2.2513
0.6 *9.4892 5.1 1.6292 9.6 2.2618
0.7 *9.6433 5.2 1.6487 9.7 2.2721
0.8 *9.7769 5.3 1.6677 9.8 2.2824
0.9 *9.8946 5.4 1.6864 9.9 2.2925

1.0 0.0000 5.5 1.7047 10 2.3026
1.1 0.0953 5.6 1.7228 11 2.3979
1.2 0.1823 5.7 1.7405 12 2.4849
1.3 0.2624 5.8 1.7579 13 2.5649
1.4 0.3365 5.9 1.7750 14 2.6391

1.5 0.4055 6.0 1.7918 15 2.7081
1.6 0.4700 6.1 1.8083 16 2.7726
1.7 0.5306 6.2 1.8245 17 2.8332
1.8 0.5878 6.3 1.8405 18 2.8904
1.9 0.6419 6.4 1.8563 19 2.9444

2.0 0.6931 6.5 1.8718 20 2.9957
2.1 0.7419 6.6 1.8871 25 3.2189
2.2 0.7885 6.7 1.9021 30 3.4012
2.3 0.8329 6.8 1.9169 35 3.5553
2.4 0.8755 6.9 1.9315 40 3.6889
2.5 0.9163 7.0 1.9459 45 3.8067
2.6 0.9555 7.1 1.9601 50 3.9120
2.7 0.9933 7.2 1.9741 55 4.0073
2.8 1.0296 7.3 1.9879 60 4.0943
2.9 1.0647 7.4 2.0015 65 4.1744
3.0 1.0986 7.5 2.0149 70 4.2485
3.1 1.1314 7.6 2.0281 75 4.3175
3.2 1.1632 7.7 2.0412 80 4.3820
3.3 1.1939 7.8 2.0541 85 4.4427
3.4 1.2238 7.9 2.0669 90 4.4998
3.5 1.2528 8.0 2.0794 95 4.5539
3.6 1.2809 8.1 2.0919 100 4.6052
3.7 1.3083 8.2 2.1041
3.8 1.3350 8.3 2.1163
3.9 1.3610 8.4 2.1282
4.0 1.3863 8.5 2.1401
4.1 1.4110 8.6 2.1518
4.2 1.4351 8.7 2.1633
4.3 1.4586 8.8 2.1748
4.4 1.4816 8.9 2.1861

* Take tabular value -10.
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Table 4. ELEMENTARY DIFFERENTIATION RULES.

Function Derivative Proved in

c 0 Sec.2.43b
x 1 Sec.2.43b
x' rx'-l Sec.4.45c

f+g f' + g' Sec.2.71a
f-g f' - g' Sec.2.71a

fg f'g + fg' Sec.2.72a
f f'g - fg'

Sec. 2.73
g g2

r1 1
Sec.2.81af'

F(y)
dF ,

Sec.2.82ady y

Inx
1

Sec. 4.32
x

log. x
1 Sec.4.36c-log. e
x

~ ~ Sec.4.43b
aX a~ In a Sec.4.44c

In y
y'

Sec.4.53a
y

cosh x sinh x Sec. 4.5, Prob. 21

sinh x cosh x Sec. 4.5, Prob. 21

• Here c, r and a > 0 are arbitrary constants, f and g are
functions of the independent variable x, f - 1 is the inverse of
f, and F is a function of the dependent variable y. The prime
denotes differentiation with respect to x.



SELECTED HINTS AND ANSWERS

Chapter 1

Sec. 1.2

1. {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, 0.
2. (a) to}; (c) {3,-3}; (e) {a,c,l,s,u}.
3. Only (a) is true. A has 4 elements.
4. All but (d) are true.
5. (a) {a,b,c,d}.
6. (a) {3,4}.
7. Trivial, but give details anyway.
10. (a) {3}; (c) {I, 2, 3}.
12. Only (c) and (e) are empty.
13. 16.

Sec. 1.3

1. Yes. -1 - (-2) = 1,(-1)(-1) = 1, -1 -;- -1 = 1.
2. (a) ! + 1= i; (c)! '1= i. .
3. Let min and m'ln' be two rational numbers, where m, n (#0), m', n' (#0) are

. m m' mn' + m'n ..
mtegers. Then - + -, = " where mn' + min and nn' (#0) are agamn n nn
integers, and similarly for subtraction and multiplication .. If m' # 0 as well, so

m m' mn'
that m'ln' :f: 0, then - -;- -, = -, , where mn' and m'n (#0) are again integers.

n n mn
4. All but (a) exist.
5. Irrational.
6. (1 - J2) + J2 = (1 - J2) - (-J2) = 1,where both terms are irrational.
7. -Ii' J2 = 2 is rational, and so is -Ii -;-J2 = 1.
8. The set of irrational numbers is not closed under any of the operations.
9. On the one hand, 0 . c + 1 . c = 0 . c + c, while on the other hand, 0 . c + 1 . c =

(0 + 1) . c = 1 . c = c, so that 0 . c + c = G. Now subtract c from both sides.

12. The formula holds for n = 1,since 1 = 1(1: 1). Suppose the formula is true

k(k + 1)
for n = k, so that 1+ 2 + ... + k = 2 . Then 1+ 2 + ... + k + (k + 1)=
k(k + 1) (k 1) k(k + 1) + 2k + 2 (k + 1)(k + 2) h h ~ I

2 + + = 2 = 2 ' so t at t e !ormu a

also holds for n = k + 1.

239
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13. By definition, a/O is the number e such that 0 . e = a. But 0 . e = 0 for all e
(Prob. 9), and hence there is no such e unless a = O. If a = 0, we get % which
is meaningless, not because there is no number e such that 0 . e = 0, but rather
because every number e has this property!

14. 1
3do1o.

15. t + i = 0.3333 ... + 0.1666 ... = 0.4999. .. Let x = 0.4999. .. Then lOx =
4.9999 ... , and hence 9x = lOx - x = 4.9999 ... - 0.4999 ... = 4.5000 ... =
4.5, so that x = 4.5/9 = 0.5. Thus a decimal with an endless run of nines after
a certain place represents the same rational number as the "next highest
decimal," which always terminates.

16. (a) n; (c) l#t. Use the same reasoning as in Prob. 15.
18. 1.414214673 ...
20. Suppose k is a sum of threes and fives exclusively. Then this sum either con-

tains a five or it does not. In the first case, replace a five by 2 threes. In the
second case, there are at least 3 threes, since k exceeds 7, by hypothesis, and
we can replace 3 threes by 2 fives. To start the induction (Sec. 1.37c), note that
8 = 5 + 3.

Sec. 1.4

1. (a) a - b > 0, and hence -a - (-b) < O.
mn' - m'n

2. p > p' means p - p' > 0, or equivalently , > O. But nn' > 0, andnn
hence mn' - m'n > 0, or equivalently mn' > m'n.

3. (b) -no
4. By Theorem 1.43 twice, ae > be and be > bd. Hence ae > bd, by Theorem 1.45.
5. Clearly a t= b. If a > b, then, by Prob. 4, with e = a, d = b, we have a2 > b2,

contrary to b2 > a2.
6. An immediate consequence of Theorem 1.43. If a2 = a, then a = 0 or a = 1.
10. (a) 0; (c) 1; (e)-1.
11. (b) n.
12. If p < q, then ip < iq. Adding first ip and then iq to both sides of the last

inequality, we get p = ip + ip < tp + iq and ip + iq < iq + iq = q. Let
rand s be rational numbers such that r < 1, s > O. Then r' = t(r + 1) and
s' = i(O + s) = h are rational numbers such that r < r' < 1, 0 < s' < s.
The argument works equally well for real p, q, r, s, r', s'.

13. (b) Show that (a + W ~ 4ab is equivalent to (a - W ~ O.

Sec. 1.5

1. Examine cases. For example, if x > 0, y < 0, then Ixl = x, Iyl = - y, Ixyl = - xy.
4. By two applications of the inequality (3), Ix + y + zl = I(x + y) + zl ~

Ix + yl + Izi ~ Ixl + Iyl + Izi.
7. o,-i-
8. x2 lies to the right of x if x > 1 or if x < 0, and to the left of x if 0 < x < 1.

x2 and x coincide if x = 0 or x = 1.
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9. IXl - !(Xl + X2)! = IX2 - !(Xl + X2)! = !lx1 - x21 = !:\PlP2\'
10. First replace x by x - y in (3), and then replace y by y - x. Equality occurs

under the same conditions as for (3) itself, namely if x and y have the same sign
or if one (or both) of the numbers x and y is zero.

12. The point moves from a to b.
13. (a) If n is any integer greater than 1/lxl - x21, and if c is the irrational number

1/.Ji < 1,then atleast one ofthe rational numbers ... , - 3/2n, -1/2n, 1/2n,3/2n, ...
and at least one of the irrational numbers ... , - 3c/2n, - c/2n, c/2n, 3c/2n, ... falls
between Xl and X2; (b) Apply (a) repeatedly.

Sec. 1.6

1. (0,2). [- 3, 3]'
3. The interval 1 :::;;X :::;; 2.
5. (-2,1). [-1,2].
6. (a) (1,3]; (c) (-00,00).
7. (b) {1}.
8. (0, (0), (- 00,1]'

Sec. 1.7

1. A six-pointed star.
2. A' = (3,2), B' = (3,4), C' = (1,5), D' = (-1,4), E' = (-1,2), F' = (1, 1). Each

abscissa is increased by 1 and each ordinate by 2.
3. x < 0, y > 0 in the second quadrant, x < 0, y < 0 in the third, x > 0, y < 0

in the fourth.
4. (a) 4.Ji; (c) 1.
7. 5.
8. IABI = IBej = ICDI = IDAI = JU and IAej = IBDI (=J34).
10. (3, 3), (15, 15).
11. 21.
12. C = (x + x', y + y').

Sec. 1.8

1. (a) 11; (c) Slope undefined.
2. When m = m'.
3. (a) 45°; (c) 135°.
4. (a) tan 20° = 0.36397; (c) tan 165° = -tan 15° = -0.26795.
6. -1.
8. The lines are perpendicular.

Sec. 1.9

1. (a) y = 2x - 2; (c) y = 2x - 1; (e) y = 2x - 3.
2. (a) y = 7x - 19; (c) y = x + 4.
3. (a) y = -x + 1; (c) y = -2.
4. (a) m=3,a=2,b= -6; (c) m= -1,a=3,b=3.
5. (a) m = 5, a = -~, b = 4; (c) m = 0, a undefined, b = 3.
6. y = 2x - 8.
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7. y = -x + 3. (t,i).
8. 20.
11. y = -2x.
12. The line has slope m = - b/a.
13. (b) x + 3y + 3 = O.
14. y = -x + 5, y = ~x.
15. i.
17. (a) 2; (c) O.

Substitute this value ofm in formula (2).

Chapter 2

Chap. 2

Sec. 2.1

1. 1(0) = 6,/(1) = 10,/(2) = 16, 1(J2) = 8 + 3J2.
3. g( -1) = -t, g(O) = -1, g(1) = t g(I/J2) = 2J2 + 2, g(I/J3) does not

exist.
4. (a) Domain all x such that Ixl~ 3, range all y ~ 0; (c) Domain all x #- 3,

range all y #- O.
5. 1(3,1) = !,f(0,1) = 2,f(1, 0) = t,f(a, a) = -1,f(a, - a) = 1.
6. Domain all points in the xy-plane except the origin, range - 00 < Z < 00.

7. Yes.
8. No. Yes.
10. No.
11. Yes.
13. True.
14. False.
16. /(1, 1, 1) = 3,/(4, 1,9) = ¥, 1(1,9, 1) = t,/(4, 9, 16) = n.
18. Yes.
19. The inverse function has domain Y and range X.
20. All but (e). The inverses are: (a) x = y (b) x = l/y; (c) x = 1 + (l/y);

(d) x = y2 (y ~ 0).
21. False.
22. Domain - 00 < x < 00, range the set of all integers.
24. No, only when every y E Y is the second dement of a pair (x, y) E f.
25. 2".
26. When no two ordered pairs in1have the same second element. To get1-1,

write all the pairs in1in reverse order.
27. Delete either the point Xl and the arrow joining Xl to Yl or the point X'i and

the arrow joining x~ to Y1-
28. Reverse the directions of all the arrows.
30. (a) Finite; (c) Infinite.

Sec. 2.2

1. (a) X #- 0; tt) X ~ 0;
3. 1f,-li, i,-rh,A
5. 2.
6. False.

(c) x ~ o.



Selected Hints and Answers 243

7. (a) t,i,i,~,i; (c) 1, -t, t, -!,t.
8. 1,4,9, ... , n2, ••• (recall Sec. l.37a).
9. 1, 1, 2, 3, 5, 8, 13,21.
11. Examine the three cases -00 < x < -1, -1::::;; x ::::;;1 and 1 < x < 00

separately.
13. l8'

Sec. 2.3

1. The pair of intersecting lines y = x and y = - x.
3. x2 + y2 + 4x - 6y + 9 = O.
4. True. If the line x = c intersects the graph in more than one point, then the

function takes more than one value at x = c, contrary to the definition of a
function.

5. False. Consider circles, for example.
6. See Prob. 4.
7. No line parallel to either the x-axis or the y-axis can intersect the graph in

more than one point.
9. (a), (d) and (f) are even, (c) and (e) are odd, (b) is neither even nor odd.
10. Note that (-1)" = 1if n is even, while (-1)" = -1 if n is odd.
12. True.
13. x2 + y2 - X - Y = O.
14. Reflect G in the line y = x. Then interchange the labelling of the coordinate

axes.
15. If x '" x', then either x < x' or x' < x, Since j is increasing, j(x) < j(x') in

the first case and j(x') < j(x) in the second case, so that in any event j(x) '"
j(x'). Therefore j is one-to-one, with an inverse j - 1, Let y = j(x), y' = j(x'),
so that x = j-l(y), x' = j-1(y'), and suppose y < y'. Then x :f. x', sincej-l
is itself one-to-one, but x' < x is impossible, since then y' < y. Therefore x < x',
so that j - 1 is also increasing.

16. Use Probs. 12 and 15.
17. See Figure 1A.
18. See Figure 1B.

y y

-2 -1 0

A

2
x

Figure 1.

-2 -1 0

B

2
x
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19. Suppose 0 < x < x' and 0 < xk < X'k. Then 0 < xk+ 1 < x'k+ 1, by Sec. 1.4,
Prob. 4. The result now follows by mathematical induction (Sec. 1.37).

20. Use Prob. 19 and the symmetry of the curve y = x" (recall Prob. 10).

Sec. 2.4

3. No, unless m = O. Yes.
4. Yes.
5. If If(x) - AI is "arbitrarily small," then so is I[f(x) - A] - 01,and conversely.
6. (a) 0; (c) 1; (e) No limit.
7. No. Yes.
8. (b) O.
9. In general, yes. No.
10. If If(x) - 01is "arbitrarily small," then so is Ilf(x)1 - 01= Ilf(x)11 = If(x)l, and

conversely.
11. No.
12. Suppose both f(x) --> A1 as x --> Xo and f(x) --> A2 as x --> Xo, where A 1 :f. A2•

Then, choosing 8 = tlA1 - A21 > 0, we can find numbers 151 > 0 and 152 > 0
such that If(x1) - Ad < 8 whenever 0 < Ix - xol < 151 and If(x) - A21 < 8

whenever 0 < Ix - xol < 152, Let 15 be the smaller of the two numbers 151 and
152, Then IA1 - A21 = IA1 - f(x) + f(x) - A21 ~ IA1 - f(x)1 + If(x) - A21 <
28 = IA1 - A21 whenever 0 < Ix - xol < 15. But this is impossible!

13. Let f(x) --> A as x --> Xo, and let fl(X) = f(x) everywhere except at x = Xl'
Then, given any 8 > 0, there is a 15 > 0 such that If(x) - AI < 8 whenever
o < Ix - xol < 15. Let 151 be the smaller of the numbers 15 and Ixo - xli :f. O.
Then, given any 8 > 0, we have Ifl(x) - AI = If(x) - AI < 8 whenever
o < Ix - xol < 151, so that fl(X) --> A as x --> Xo'

14. Choosing 8 = 1, we can find a 15 > 0 such that If(x) - AI < 1 whenever
o < Ix - xol < 15. But If(x) - AI ~ If(x)1 - IAI, with the help of Sec. 1.5,
Prob. 10. Therefore 0 < Ix - xol < 15 implies If(x) I - IAI < 1, or equivalently
If(x) I < IAI + 1.

15. If A > 0, choose 8 = tAo Then there is a 15 > 0 such that 0 < Ix - xol < 15
implies If(x) - AI < tA, or equivalently 0 < tA < f(x) < ~A, so that, in
particular, f(x) > 0 and tlAI < f(x) = If(x)l. If A < 0, choose 8 = -tAo
Then there is a 15 > 0 such that 0 < Ix - xol < 15 implies If(x) - AI < -tA,
or equivalently ~A < f(x) < tA < 0, so that, in particular, f(x) < 0 and
-If(x)1 = f(x) < tA, or equivalently If(x)1 > -tA = tiAI.

Sec. 2.5

1. ~x = -0.009, ~y = 990,000.
4. No. Yes, the tangents at any pair of points (xo, X6), (-xo, -X6) are parallel.
6. y = 0 or y = 8x - 16.
7. (2,4).
8. -2.
9. (a) ~y = 7, dy = 3, E = 4, about 57% of ~y; (c) ~y = 0.030301,

dy = 0.03, E = 0.000301, about 1% of ~y. The approximation of ~y by dy
improves as ~x gets smaller.

10. When I~xlis too large or when f'(x) = O.
11. ~(uv) = ~u(x)v(x + ~x) + u(x) ~v(x) = u(x + ~x) ~v(x) + ~u(x)v(x).
12. b = - 3, c = 4.
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v

Figure 2.

x

13. Recall Sec. 2.3, Prob. 17.
14. About 19 square miles, almost as large as Manhattan Island.
15. In Figure 2, drawn for the case L\x > 0, 0 < dy < L\y, we have dy = IABI,

L\y = IAQI. Thus dy is the increment of the ordinate of the tangent T to the
curve y = f(x), while L\y is the increment of the ordinate of the curve itself.

Sec. 2.6

2. Apply formulas (2) and (4) repeatedly.
4. (a) 0; (c) l
5. At x = 1,2.
7. lim f(x) = 3, lim f(x) = 5.

x~2- x...•2+
8. See Figure 3. At x = 0, :t 1, :t2, ...

v

3 ---.0
2 ---.0

f(x) = [x]

x
-4 -3 -2 -1 0 1 2 3 4

-1

---.0 -2

- -3

Figure 3.
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9. Examine the figure, noting that the solid dots belong to the graph.
10. No. Yes. No.
13. No, since such intervals do not contain their end points.
15. We have

Chap. 2

If(x)g(x) - ABI = If(x)g(x) - Bf(x) + Bf(x) - ABI
= If(x)[g(x) - B] + B[f(x) - A]I
~ If(x)[g(x) - B]I + IB[f(x) - A]I
< If(x)llg(x) - BI + (IBI + 1)lf(x) - AI.

Given any e > 0, there are positive numbers c5t> c52, c53 such that If(x)1 < IAI + 1
e

whenever 0 < Ix - xol < c5t> If(x) - AI < 2(IBI + 1)whenever 0 < Ix - xol < c52,
e

and Ig(x) - BI < 2(1AI+ 1) whenever 0 < Ix - xol < c53. Let c5 be the smallest

of the numbers 01' 02' 03' Then

e e
If(x)g(x) - ABI < (IAI + 1) 2(IAI + 1) + (IBI + 1) 2(IBI + 1) = B

whenever 0 < Ix - xol < 0.
Similarly,

I
I(X) _ A I = IBf(X) - Ag(x) I = IBf(x) - AB + AB - Ag(x)1
g(x) B Bg(x) IBg(x)I

IBllf(x) - AI + (IAI + 1)lg(x) - BI
< IBllg(x)1

Given any B > 0, there are positive numbers 01' c52, 03 such that Ig(x)1 > tlBI
BIBI

whenever 0 < Ix - xol < 01' If(x) - AI < -4- whenever 0 < Ix - xol < 02'

elBI2
and Ig(x) - BI < I I whenever 0 < Ix - xol < c53• Let 03 be the smallest4(A + 1)'
of the numbers 01' 02' 03' Then

I
f(x) A I 2 BIBI 2(IAI + 1) elBI2 _

g(x) - B <W -4- + IBI2 4(1AI + 1)- e

whenever 0 < Ix - xol < c5.

Sec. 2.7

4x3 + 6x;
11. (a) (c) 1 + ::2'X

2. (a) 2x - (a + b); (c) 32x3 + 12x.

3. (a) 2a
(c)

_x4 + 10x3 + 6x - 15
(x + a)2' (x3 + W

4. True.
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3JX
(c) -2-'

1
8. (a) 3ifX2'

9. True.

10. y' = - :2' " 2
y = x3'

", 3 . 2 (n) n n!,
y = - x4 , ... , y = (-1) x"+ l'

8.

12. y<6) = 4. 6!, y(7) = O.

Sec. 2.8
31.: 3 dy 1 1 1 1 - 2/31. If y = ~x = X1/3 then x = y and - = -- = - = -- = -x

, dx dx/dy 3y2 3(ifX,)2 3

2. J3 + J5.
b)

(x + 2)(x + 4)
3. ( (x + 3)2

4. 200. 399•

x
7. (a) -===' (c)

Jx2 + a2' (.Ja2 _ X2)3

(1 - xy-l[(r + s) + (r - s)x]
(1 + X)s+l

d 1 f'(x)
9. Start from dx f(x) = - f2(X)'

11. In the interval 0 ~ x < 00. In the whole interval - 00 < x < 00.

2x - Y
13. y' = x _ 2y' y'lx= 1.y=0 = 2, y'lx= 1.y= 1 = -1.

14 " m(m + n) -min
• y = n2x2 x .

15. !:.-xm/n=dy =dydt =mtm-1 dt =mt
m
-
1

=m~-1 =~(xl/n)m-n=~x(m/n)-l,
dx dx dt dx dx dx/dt ntn-1 n n

where we make free use offormulas (15) and (16), p. 78.

17 Y' - 1. y" _ 25 ylll - ~• - -4, - -'64, - -Tl)"N.

19. Solving (16) for y2, we get y2 = t(x2 :t .J -3x4). Hence the only real solution
of (15) is x = y = 0, and it is meaningless to talk about y'.

Sec. 2.9

1. (a) 1; (c) l
2. (a) - 00; (c) 00.

3. f(x)-+ ooasx-+0+,I-,2+,whilef(x)-+ -ooasx-+0-,I+,2-.
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(c) x = :t:2,y = 1.

(c) 21 + 32 + 43 + 54 = 700.

1 1
(c) 1. Note that n(n + 1) = ;z - n + l'

(t)'O.
x > 2998.

5.
6.
8.
9.

11.
13.
14.
16.

x < 39°9°9°,X > igg?
(a) x = - 2, y = 1;
See Figure 16.
(a) 1; (c)~.
None.
The formula obviously holds for n = 1. Suppose it holds for n = k, so
that (1 + 4 ?l: 1 + kx. Then it holds for n = k + 1, since (1 + xr-1 =

(1 + 4(1 + x) ?l: (1 + kx)(l + x) = 1 + (k + l)~ + kx2 ?l: 1 + (k + l)x.
17. 1iflal> 1,Oiflal < 1,-!-ifa = 1.
18. (a) 1+-!-+i+i+!=1l07;

19. (a) 2;

20. There are no points at which f(x) -+ :t: 00, and f(x) does not approach a finite
limit as x -+ :t: 00. However,

lim I 2

X3

- ~I= lim I ~x I = O.
x~:!:oo 2x + 1 2 x~:!:oo 2(2x + 1)

21. Let Xn equal J2 to n decimal places.
23. Note that Xn = Sn+1 - Sn -+ S - S = Oas n -+ 00.

Chapter 3

Sec. 3.1

1. The average velocities are 215, 210.5 and 210.05 ft/sec. The instantaneous
velocity is 210 ft/sec.

3. The acceleration is variable.
4. The stone hits the ground 3 seconds later, travelling at a speed of 64 ft/sec.
6. The car is accelerating with a constant acceleration of k = 8.8 ft/sec2• Equation

(7) can only be valid when the car's speed is well below its top speed.
7. The car is decelerating with a constant deceleration of k = 4 ft/sec2

•

9. The stone's motion during the last 3 seconds is the "reverse" of its motion
during the first 3 seconds (make this precise).

10. The flywheel has angular velocity (J'(t) = b - 2et and angular acceleration
(J"(t) = -2e.

Sec. 3.2

1. 5/8n ~ 0.2 ft/min = 2.4 in/min.
3. No. Yes.
5. Increasing, at 40 in 2/sec.

d
7. MR(Q) = dQ QAR(Q).
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9. Q(P) is a decreasing function of P.
10. Since Q = Q(P) is decreasing, it has a decreasing inverse P = P(Q), by Sec. 2.3,

Prob. 16, so that PQ = PQ(P) = QP(Q).
12. - ¥ ft/min 2

•

Sec. 3.3

1. (a) No extrema; (c) A maximum equal to 1 at x = 1, a minimum equal
to !at x = 2; (e) No maximum, a minimum equal to -1 at x = -1.

2. (a) A maximum and a minimum, both equal to 0, at every point of (0, 1);
(c) A maximum equal to 0 at x = 0, a minimum equal to -1 at every point
of( -1,0); (e) No extrema.

4. True, by the intermediate value theorem.
5. No. Yes.
7. No maximum, a minimum equal to -1 at x = O.
8. The function f(x) = l/x maps (0,1) into (1, 00).
9. The function graphed in Figure 14, p. 91, maps (- 00, (0) into (1, 2).

10. Let

g(x) = {O ~f x < 0,
x If x ~ 0,

f(x) = x,
{

-I if x < -1
h(x) = x if -1 ~ x' ~ 1,

1 if x > 1.

These functions are all continuous in ( - 2, 2), say; f maps ( - 2, 2) into ( - 2, 2),
9 maps ( - 2,2) into [0,2), and h maps (- 2,2) into [ -1, 1]'

Sec. 3.4

1. f'(x) = 3x2 - 12x + 11 = 0 if x = 2 :t 1/J3 ~ 1.42,2.58.
3. The formula f(a) - f(b) = f'(c)(a - b) is equivalent to (10), but now c E (b, a).
5. c = .J2.
7. Apply formula (9) to the train's distance function s = s(t).
9. Apply the mea~ value theorem to the function JX.

Sec. 3.5

1. The domain of f is not an interval.
2. (b) -(1/x) + C.
3. Trivial, but worthy of note.
4. Use the chain rule.
5. (a) !XS - x3 + !x2 - 4x + C; (c) jxJX + 2JX + c.
6. True.
8. (b) Increasing in [ -1, 1], decreasing in (- 00, -1] and [I, 00).
9. f is a polynomial of degree less than n.

Sec. 3.6

1. Reread Sec. 3.62a.
2. (a) Minimum y = 0 at x = 0; (c) No extrema.
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3. (b) Maximum y = -2 at x = -1, minimum y = 2at x = 1.
4. (a) Maximum y = 66 at x = 10, minimum y = 2 at x = 2;

(c) Maximum y = 3 at x = -1, minimum y = 1 at x = 1.
6. y' ¥= 0 if ad - be ¥= 0, y == constant if ad - be = O.
8. e = -to
10. Y10,OOO = rtIT.

Sec. 3.7

2. Nothing. Explain.
4. Inflection points at x = :tt, concave upward in (- 00, -t), concave downward

in (-t, f), concave upward in (t, 00).
6. e = -3.
8. See Figure 4.
9. See Figure 5.
11. Let Y = T(x) be the tangent to the curve y = f(x) at x = p. Then, by the mean

value theorem in increment form (Sec. 3.43b),

f(x) - T(x) = f(x) - f(p) - f'(p).1x
= f(p + .1x) - f(p) - f'(p).1x = [f'(p + tX.1x) - f'(p)J .1x, (i)

where .1x = x - p and 0 < tX < 1. Iff' is increasing in a <5-neighborhood of p,
then f'(p + tX.1x) - f'(p) < 0 if -<5 < .1x < 0, while f'(p + tX.1x) - f'(p) > 0
if 0 < .1x < <5,so that, in either case, the right side of (i) is positive. Therefore
f(x) > T(x) in the <5-neighborhood, so that f is concave upward at p. The
proof for decreasing f' is virtually the same.

12. Again we start from (i). Suppose the extremum is a maximum. Then
f'(p + tX.1x) - f'(p) < 0 if - <5< .1x < 0, while f'(p + tX.1x) - f'(p) < 0 if
o < .1x < <5,so that the right side of (i) is positive to the left of p and negative

v

Figure 4.
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y

x
o 2

Figure 5.

to the right of p. Therefore f(x) > T(x) to the left of p, while f(x) < T(x) to
the right of p, so that p is an inflection point of f. The proof for the case of a
minimum is virtually the same.

Sec. 3.8

1. The square of side JA.
2. The triangle with legs c/3 and c/J3.
3. 2n[3/9J3.
5. p = (t,O).
6. 34nV2•

t = aa + pb d = lab - pal
9. 012+ p2' .Ja2 + p2

10. The line (x/2a) + (y/2b) = 1, with x-intercept 2a and y-intercept 2b.
12. Q = 30.
14. The chord whose distance from the point A equals i of the diameter of the

circle.
15. nR2(1 + .[5).

Chapter 4

Sec. 4.1

1. (a) 2; (c) max A does not exist.
4. (b - a)/n. No, although A.< b - a.
7. Yes. Define the area A between the curve y = f(x) and the x-axis from x = a

to x = b by the integral A = J~f(x) dx, whether or not f(x) is nonnegative.
Then A < 0 if more area lies "above" the curve than "below" it.

9. max A = a if 0 ~ a ~ 1,max A does not exist if a > 1,max A = a2 if -1 ~
a < 0, max A does not exist if a < - 1.

10. Show that 0 ~ (J ~ A., where (J is the sum (3), regardless of the choice of the
points el' e2' ... ,en' Therefore (J -. 0 as A. -. O.

n. (b) Choosing all the points el' e2' ... , en in the sum (3) to be rational, we
have (J = 1,and choosing them all to be irrational, we have (J = -1, regardless
of the size of A.. Therefore (J cannot approach a limit as A. -. O.



252 Selected Hints and Answers Chap. 4

Sec. 4.2

2. (a) ¥; (c) ¥.
4. i-
S. A = H (JX - x2) dx = t. See Sec. 2.3, Prob. 14.
7. c = 4.
9. Use the fundamental theorem of calculus, noting that v = ds/dt.
11. An immediate consequence of formula (11).
12. Given any e > 0, there is a () > 0 such that IO'(A) - 0'01< e, or equivalently

0'0 - e < O'(A) < 0'0 + e,wheneverO < IAI < (). !f0'0 < O,choosee = -0'0> O.
Then there is a () > 0 such that 20'0 < O'(A) < 0 whenever 0 < IAI < (),which
contradicts O'(A) ;;:::O. Therefore 0'0 ;;:::O.

13. Apply Prob. 12 to the functions O'(A) - A and B - O'(A).
14. (b) - f(a).
15. Follow the argument used to prove formula (7).
17. Apply Prob. 16 to the function f = f2 - fl'
21. Note that -b. ~ 1/(10 + x) ~ lo if 0 ~ x ~ 2, where equality occurs only if

x = 0 or x = 2.

Sec. 4.3

2. No, since In (x2) is defined for all x #- 0, while 2 In x is defined only for x > O.
3. (a) 4 ~ x ~ 6; (c) x > e.

3x2 - 2 3
4 (a) ---- (c) - (In X)2.
• x3 - 2x + 5' x

5. (a)
2

1 - x2'
1

(c) 1 _ x2'

1
6. c = In 2'

8. /4) = -2/x2•
10. 1.
12. At x = 1. No.
14. (a) x;;::: 1 if a > 1, 0 < x ~ 1 if 0 < a < 1.
16. Use (7).

In a
18. Note that log",a = -I -.nx

Sec. 4.4

2. (a) 4e4'" + 5; (c) e"'(1 + x).

eJX+T
3. (a) 2xe",2; (c) 2.JX+1

4. ex = In (e - 1) ~ 0.54.
6. l
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v

x

Figure 6.

8. Inflection points at x = :!: 1,concave upward in (- 00, -1), concave downward
in (-1,1), concave upward in (1,00). The graph is the 'bell-shaped" curve
shown in Figure 6.

9. They are inverses of each other.
11. The advisor had the effrontery to ask for more than 18 billion billion billion

grains of rice! Show this by using formula (13), p. 97, to evaluate the sum
1 + 2 + 22 + ... + 263.

12. (a) lOX(1 + x In 10); (c) aXx. (~ + In a).

13. Use (14), (11) and (12), noting that In a > 0 if a > 1, In a < 0 if 0 < a < 1.
14. Use (17), (11) and (12), together with formulas (8) and (9), p. 155.
16. c ~ - e16, c > O.

Sec. 4.5

1. (a) lie;
2. (a) e;

(c) lie.
(c) e2.

I. aX - 1 I' tIl4. Im--= lm----=--= na.
x-o X t-O log. (1 + t) log. e

6. (a) t (c) (loglO ef.
7. $1,485.95.
9. About 13 years and a month.

11. P(I + fEY = P (1 + ~rt

•

12. One dollar grows to e dollars in one year if compounded continuously at an
annual interest rate of 100%.

(x + 1)2 (2 3 4)
13. (a) (x + 2?(x + 3)4 x + 1 - x + 2 - x + 3 .

14. (a) xX2(2x In x + x); (c) (In x)X (In In x + _1_).
In x

16. By the ordinary chain rule, Ezx = ; ~: = ;~; ~~ = (~~f)G ~~)= EzyGyx'
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MC(Q) . d C
20. Note that Be = AC(Q)' while dQ AC(Q) = Q2 (Be - 1).

21. See Figure 7. The various properties of cosh x and sinh x are easy consequences
of those of eX and e - x.

Sec. 4.6

1. If x = - t, then fO f(x) dx = - fO f( - t) dt = fa f(t) dt = fa f(x) dx.-a Ja Jo Jo
14. (a) iJX3+f + C; (c) -- + C.
Inx

d d (-t)' -1 1
5. Let t = f(x), noting that if t < 0, then -d In It I = -d In (- t) = -- = - = -.

t t -t -t t

6. (a) In (1 + x2) + C; (c) In lIn xl + c.
xaX aX

8. (a) - - --2 + C; (c) ix41n x - -fgx4 + C.
In a (In a)

9. Let u = In (x + .JI+X2), dv = dx.

2 3
10. (a) 1 - ;; (c) 2 - 4 In 2'

y

y = ~ex-----

Figure 7.

y = .!e-x___ 2

------ x
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11 ~ + 2~ + ~ + c. Note that aXbx = eX In ae"'ln b =:ex(lna+lnb) = eX In (ab)
. In4 In6 In9

= (ab)X.

S dx fl(1 1)
12. (x + a)(x + b) = a - b x + b - x + a dx

1= a _ b (In Ix + bl - In Ix + aD + C

= _1 -In Ix + bl + C.
a-b x+a

13. (a) In I:= ~I+ C.

14. 3 - e.
15. See Sec. 4.5, Prob. 21d.

17. (b) S ~ ~ : dx = S ( -1 + 1 ~ x) dx = -x - 21n 11 - xl + C.

18. The formulas (23) are equivalent to

F(x) == G(t(x)) + C, F(x(t)) == G(t) + C. (i)

The substitution x = x(t) transforms the first of these formulas into the second,
while the substitution t = t(x) transforms the second into the first, since
t(x(t)) == t, x(t(x)) == x (Sec. 2.22b).

19. By the fundamental theorem of calculus,

fb f(x) dx == F(b) - F(a) = G(t(b)) - G(t(a)) = ft(b) g(t) dt,Ja Jt(~

fX(fJ) f(x) dx = F(x(f3)) - F(x(o:)) = G(f3) - G(o:) = ffJ g(t) dt,
Jx(a) Ja

with the help of (i).

20. Repeated integration by parts gives fl x"'(1 - x)n dx = ( mIn! I)"Jo m + n + ..
21. Integrate by parts repeatedly, noting that p(n+ 1)(X) == 0, since P(x) is of degree n.

Sec. 4.7

1. The integral is divergent ifr ~ 1 and equals a1-r/(r - 1).ifr > 1.
2. (b) Divergent.
3. The integral is divergent if r ~ 1 and equals al-r/o - r) if r < I.
4. (b) i-
S. Note that

lim fX f(x) dx = fc' f(x) dx + lim f~ f(x) dx,
X-+et:) Jc Jc X-a::> Jc

so that one limit is finite when the other is finite, and only then. Similarly

lim fC' f(x) dx = lim fC f(x) dx + fC''j(x) dx.
X-+-oo x X-+-oo x Jc
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Moreover,

Chap. 5

where, for brevity, we omit the expression f(x) dx beliind the integral signs.
6. For example, s(X) = J~f(x) dx stands in the same relation to the improper

integral JO' f(x) dx as the partial sum SN = L~~I fn to the infinite series L~~I fn.
Develop the analogy further.

7. A = g (X-1/2 - x-1/3) dx.

Chapter 5

Sec. 5.1

1. Let <I>(x,y, z) = Z - F(x, y).
3. y = e-x2•
5. Take the square root and then separate variables. The extra solution is y == o.
7. We have p(dp/dy) = 2y3, and hence Jp dp = J2y3 dy + CI, or p2 = y4 + CI.

Application of the initial conditions gives CI = o. Therefore p2 = y4, or
y' = y2, so that y = 1/(1 - x), after solving this first-order equation and ap-
plying the initial conditions again.

8. The general solution is In Ixl = <I>(y/x) + C, where <I>(u) is any antiderivative
of the function 1/[f(u) - u]'

10. Solving the differential equation x - (y/y') = x2, subject to the initial condition
ylx~ -I = -1,we get y = 2x/(1 - x).

Sec. 5.2

3ln 10
1. ---.n2 ~ 10 hrs. N = 1000. 21•

5ln 2
3. In (1.2) ~ 19 yrs.

5. No.
8. 1hr.
10. To get the solution of (21), change e-rt to erl in formula (13).

S
11. N = Noert + _(ert - 1).

r

12. If the fresh specimen has No radioactive atoms, the old specimen has N oe - k,

atoms, where k = (In 2)/5570 is the decay constant of radiocarbon. Therefore
n = aNo, m = aNoe-k" where IX is some constant of proportionality. But then
n/m = ekt

•

Sec. 5.3

1. S = Ft2/2m.
3. S = (kt3/6m) + vot.
5. 32 ft.
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7. V = J~kx dx = !ks2.
9. As in Example 5.33f, the work done on the rocket by the earth's gravitational

pull is

W = _ rR+h kMm ds = kMm _ kMm = kMmh mgRh
JR S2 R + h R (R + h)R - R + h'

with the help of (24). Therefore !mv6 = mgRhj(R + h).
11. About 1.5 mijsec.

Chapter 6

Sec. 6.1

1. The point P in R3 with X, y and z-coordinates a, band c is the unique point of
intersection of the planes x = a, y = band z = c.

3. (a) 6; (c) 25.
5. All but (ft, ft, 1) and (ft, ft, ft).
7. Yes. Consider a sphere.
8. (a) The plane y = a.
9. (a) z = 1 - Ixl (-1:::;; x :::;; 1).
10. Intervals are connected.
12. (5, 0, 0), ( - 11, 0, 0).
14. A pair of right circular cones with their common vertex at the origin (make a

sketch).
15. The domain of f is the set of all points (x, y) such that Ixl > Iyl. This set is not

connected (why not?).

Sec. 6.2

1. Formula (2)means that, given any e > 0, there is a fJ > 0 such that If(x, y) - AI < e
whenever 0 < -./(x - a)2 + (y - W < fJ. Therefore if(x, b) - AI < e whenever
o < -./(x - a)2 = Ix - al < fJ, and If(a, y) - AI < e whenever 0 < -./(y - W =
Iy - bl < fJ.

2. Use Prob. 1, first setting y = 0 and the~n_x_=~O. ~
3. Yes. Use the inequalities Ix - al :::;;-./(x - af + (y - W,

Iy - 51 :::;;-./(x - a)2 + (y - W, -./(x - a)2 + (y - W :::;;Ix - al + Iy - bl.
4. By Prob. 3, lim f(x, y) = lim g(x) = g(a) = f(a, b).

x ..••x ..••
y"'b

5. See Prob. 4.
6. Use the analogue of Theorem 2.63c for functions of two variables.
7. (b) 1.
8. The triple limit is another way of writing (x, y, z) -+ (0, 1, e). By the three-

dimensional analogue of Prob. 6, the function In z . is continuous at. -./x2 + y2
(0,1, e). Therefore A = In e = 1.

10. On the cylinder x2 + y2 = 1.

2y iJz 2x
(x - y)2' iJy = (x _ y)2'

11 (b)
iJz

• iJx
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12. (b)
au 1 au 1 au 1, - ,
ax x oy y oz z

13. (a) -1/x2.

02z a 1 a 02z
14. (a) ax oy = ax x + y = - (x + y)2 = oy X + y = oy ax'

15. (a) !!..j(x, y) = (x + dX)2 + (y + dy)2 - x2 - y2 = 2x dx + 2y dy + (dX)2 + (dy)2
is of the form (8) with A = 2x, B = 2y, a(dx, dy) = dx, f3(dx, dy) = dy.

16. (a) dz = (y - 2xy3 + 3x2y) dx + (x - 3X2y2 + x3) dy.
17. (a) 5.022.
20. First solve for each of the three variables as a function of the other two.

Sec. 6.3

1. (a)

2. (a)

3. (a)

2e21 + (~ _ ~) el•
t2 t3

OZ = 2x + 2 In (x + y), OZ 2 In (x + y)
ax x + y oy x + Y

OZ OZ oz oz oz oz
ax = p au + r ov' oy = q au + s ov'

(i)

4. Zx =~, Zy =~. ZxIX=lY=2z=1 = -2, ZyIX=1.Y=2.z=1 = -1,z - xy z - xy ..
Zxlx=1.y=2.z=3 = 6, ZyIX=1.y=2.z=3 = 3.

5. (a) 2; (c) t (e)-I.
6. Differentiate (19) with respect to t, and then set t = 1.

02Z 2 02Z 02Z 1 02Z 394 .. .
7. ox2 = -"5' oyox = oyox = -"5' oy2 = -125 at the mdlcated pomt.

Sec. 6.4

1. (b) Minimum z = -1 at (x, y) = (1,0).
2. (b) Minimum z = 0 at (x, y) = (2,4).
4. Maximum z = 3/e at (x, y) = (0, :!: 1), minimum z = 0 at (x, y) = (0,0).
5. If z -+ co, then x -+ 0, y -+ 0, since otherwise xz + yz -+ co. Therefore

I. I' ( ) xy I' xy 01m V = 1m c - xy -- = C 1m -- = ,
z--+oo x--+o X + Y x--+o X + Y

)'-0 )'-0

with the help of (10) and the inequality I~I = l-x-11yl:::;;Iyl, valid for
positive x and y. x + Y x + Y

6. No.
9. Solve the equations

OV cy2 - X2y2 - 2xy3
------=0

ax (x + y)2 '

for positive x and y.
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10. It follows from (i) that

02V 2 i + c
A = ox2 = -2y (x + y)3'

02V C - x2 - 3xy - i
B = ax oy = 2xy (x + y)3 '

02V Xl + c
C=-= -2x2---oy2 (x + y)3.

Let

f(x, y) = (x ~ 16
(AC - B)2 = (x2 + C)(y2 + c) - (c _ x2 _ 3xy _ y2)2.

4x y

Then

so that D = AC - B2 is positive at the point (.JC13, .Jc/3), while A is negative.
11. The (perpendicular) distance d between PI and the line L with equation

Ax + By + C = 0 is, of course, also the minimum distance between PI and
a variable point P = (x, y) of L. Minimizing b = .J(x - xd2 + (y - yd2
subject to the condition Ax + By + C = 0 is equivalent to minimizing b2
subject to the same condition. Let u = ,b2 - A(Ax + By + C), where A is a
Lagrange multiplier. Setting the partial derivatives of u with respect to x, y
and A equal to zero, we get

au
ax = 2(x - Xl) - AA = 0,

au
oy = 2(y - yd - AB = 0,

au
OA = Ax + By + C = o.

The last equation is just the equation of L. It follows from the first two equa-
tions that (X2 - xd/A = (Y2 - YI)/B, where P2 = (X2, Y2) is the point of L
minimizing u and hence b. Let this last ratio be denoted by q. Then X2 - XI = Aq,
Y2 - Yl = Bq, and hence d, the minimum value of b, equals .J A2q2 + B2q2 =
.JA2 + B21ql. ButP2liesonL,andhenceAx2 + BY2 + C = A(Aq + XI) +
B(Bq + YI) + C = 0, so that q = -(AXI + BYI + C)/(A2 + B2). Substituting
this value of q into the formula for d, we get the required answer.

12. MCI(QhQ2) = 6QI + 2Q2,MC2(QhQ2) = 2QI + 6Q2. Theprofitn(QI' Q2) =
PIQI + P2Q2 -: C(Qh Q2) is maximized when Ql = n,(3PI - P2), Q2 =
n,(3P2 - Pd. Note that a2n/aQi = -6 < 0, while (a2n/aQf)wn/aQ~) -
(02n/8QI OQ2)2 = 32 > O. The larger price must not exceed three times the
smaller price.



SUPPLEMENTARY
HINTS AND ANSWERS

Chapter 1

Sec. 1.2

2. (b) {5}; (d) {2,3}.
5. (b) {-1,0,1,2,3,4}.
6. (b) g.

!. If x belongs to A, then x certainly belongs to A or B. If x
belongs to both A and B, then x certainly belongs to A.

9. If x belongs to A and B, then x certainly belongs to A or B,
in fact to both. Yes, if A = B.

10. (b) {l,2,31; (d) g.
11. (b) and (d).
12. (a) The triangle with sides 3, 4, 5 is a right triangle, and

so is the triangle with sides 3n, 4n, Sn, where n is any
positive integer; (b) Note that 52 + 122 = 132; (c) The
interior angles of a regular polygon all equal n ~ 2.180°, and
hence cannot be smaller than 60°; (d) The square is a regular
polygon; (e) There is no positive integer n such that
n ~ 2.180° = 1000.

Sec. 1.3

~.

260

1 1
(b) ~ - 3 1

1)
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5. If 1 - 12 were rational, then 1 _ ~ = m
n

where m and n are

integers.

integers.

10. 1 0.25,'4

11. 1 0.1,g-

16. (b) 31
99

But then ~ = 1 - ~ = n ~ m , where n - m and n are

This is impossible, since ~ is irrational.

120 = 0.05.

A = 0.09.

139(d) - 333

17. Let the rational number be ~ , and carry out the long division.n
Each step of the division gives a remainder less than n. If 0

is obtained at any step, the decimal representing ~ terminates.

Otherwise, since there are at most n - 1 nonzero remainders,

one of the remainders must eventually repeat. But then the

same group of digits must repeat in the quotient, provided we

19.

are in the part of the quotient past the decimal point.

2 2.13 + 3.12 + 1The formula holds for n = 1, since 1 6

k, so that

Then

2 + 3 + 1
6

12 + 22 +

Suppose the formula is true for n

2k3 + 3k2 + k
6

2 2 2 2 2k3 + 3k2 + k 21 +2 + ••• +k +(k+l) +(k+l)
6

2k3 + 3k2 + k + 6(k2 + 2k + 1) _ 2k3 + 9k2 + 13k + 6
6 6

2(k + 1)3 + 3(k + 1)2 + (k + 1) , so that the formula also
6

holds for n k + 1.

Sec. 1.4

1. (b) a - b > 0, c - d > 0, and hence (a - b) + (c - d)
= (a + c) - (b + d) > O.
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3.

1.

10 167
(a) "3; (c) 50 .

2 1 - 1Note that 1 1, ---2--= 0, 12 > 1 > 0 > -3.

write -3 < 0 < 1 2 1 ~ 1 < 12 < IZ.

We can also

!. (a) Use Prob. 1a and the fact that a b implies -a = -b;

(b) Examine cases, using Theorem 1.45; "",c)Same hint.

2.. Use Theorem 1.43 and the fact that a = b implies ac = bc.

10. (b) 1; (d) 1; (f) -2.
11. (a) n; (c) n - 1-
13. (a) Start from (a _ b)2 > 0; (c) Start from (a - 1)2 > 0,-

and use Theorem 1.43 to divide by a.
14. Use Prob. 13b, noting that equality occurs when a

then. Also use Prob. 5.

b and only

15. A rectangle of length x and width y has perimeter p = 2(x + y)
and area A = xy. In terms of the arithmetic mean a and
geometric mean g, we have a = j p, g = IA. Holding a (or p)
fixed, we get the greatest value of g (or IA)' and hence of
A = (/.A)2,when x = y.

Sec. 1.5

~. An immediate consequence of formula (1).
1. If x > 0, then Ixl = x and Ixl2 = x2, while if x < 0, then

Ixl = -x and Ixl2 = (_x)2 = x2•
~. Use mathematical induction (Sec. 1.37) and an argument like

that in Prob. 4.
!. -3, 1.

11. (b) x = 2; (d) x = -2, ~
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Sec. 1.6

2. [2,8). (12 - 2,13 - 2].

4. (3 - 12,3 + 12). (3 - 12,3) U (3,3 + 12).

6. (b) [1,00).

7. (a) [-1,1]; (c) (-1,1].

Sec. 1.7

4. (b) 5; (d) 3.

5. (1,1), (-1,1), (-1,-1), (1,-1).

6. ,J[X1 - ~(X1 + X2)]2 + [Y1 - }IY1 + y2)]2

=,.J[X2 - !(X1 + x2)]2 + [Y
2

- ~(Y1 + y
2
)]2.

= j,J(X1 - X2)2 + (Y1 - y2)2 = i 1P1P21.

~. (f,3) is the midpoint of AB, (l,i) is the midpoint of BC, and
so on.

Sec. 1.8

!. 1
(b) - '3 (d) 13 - 12".

4. (b) tan 1000 = -tan 800
5. -3.

-5.67128.

7. Let L have slope m and L' slope m'. Then m = 2, m'
that m' = - ! .

m

1
'2 ' so
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Sec. 1.9

1.

2.

3.

(b) Y 2x + 1; (d) Y 2x.

(b) 1 + .! (d) 1 +11y '2x 4 Y - '2 x 2

(b) 3x; (d) 1 x + 3
Y Y - '2 '2

4. (b)m = 2, a -2, b 4; (d) m = 0, a undefined, b = 2.

5. (b) m=-},a= 0, b = 0; (d) m = -1, a = -1, b =-1-

9. Below it.
10. The first two lines are parallel, the second two are perpendi-

cu1ar.
13. (a) 2x + y - 2 = 0; (c) 4x + By - 1 = O.

16. Let L be the line Ax + by + C = 0, and let P2 = (x2'Y2) be the

foot of the perpendicular dropped from P1 to L. Then

d = IP1P21. Since the slope of L equals - ~ ' the slope of
the line L' through P1 and P2 equals ~ Hence the equation

Bof L' is y - Y1 = K(x - xl)' Since P2 lies on L', we have
B x2 - xl Y2 - Y1

Y2 - Y1 = K(x2 - Xl)' or A = B Let this last

ratio be denoted by q. Then x2 - xl = Aq, Y2 - Y1 = Bq, and

d = IP1P21 = ~(X2 - x1)2 + (Y2 - y1)2 = ~A2q2 + B2q2

= ~A2 + B2 Iql. But P2 also lies on L, and hence

Ax2 + BY2 + C = A(Aq + Xl) + B(Bq + Y1) + C = 0, so that
q = -(Axl + BY1 + C)/(A2 + B2). Substituting this value of q

into the formula for d, we get the required answer.

17. (b) 5.
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Chapter 2

Sec. 2.1

2. ep(-2) = 14, q-(-l) 4, 'f(0) = 0, cr(l3) = 9+ 13.

4. (b) Domain -3 < x < 3, range 0 ~ y < 3; (d) Domain all

x ~ -5, range all y ~ O.

9. Take an evening paper dated d, and look up'P in the financial

section. The function is undefined on days when the exchange
is closed.

12. No.
15. V = iwh.

17. Let x be the temperature in degrees Centigrade and y the
9temperature in degrees Fahrenheit. Then y 5" x + 32,

x = ~ (y - 32). The missing entries are x 40 and y = 176.

23. Convince yourself that every "rule" or "procedure" associating

a unique value of y with each given value of x is in effect a

set of ordered pairs of the type described.

29. The one-to-one function fen) = n + 1 maps the even numbers into
the odd numbers.

30. (b) Finite;

Sec. 2.2

(d) Infinite.

2. a = 4, b = -1.
4. f (f(x» f(g(x» 2 g(f(x» 1/x2, g (g(x»= x, l/x , =
7. (b) 1 1 1 1 1 (d) 1, 1, 1 1, 12' 6' TI' 20' 30 3' 5"

4x •

10.
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12. No. For example, let f(x) {1
0 if x ~ 0,
if x < 0,

g(x) {O
l if x > 0,
if x < o.

Sec. 2.3

2. The circle of radius 1 with its center at the point (-1,1).
8. The graph of f(x) + c is obtained by shifting G a distance c

upward if c > 0 and a distance Icl downward if c < O. The
graph of f(x + c) is obtained by shifting G a distance c to
the left if c > 0 and a distance Icl to the right if c < O.

11. For example, if f(x) and g(x) are odd, then f(-x) = -f(x),
g(-x) = -g(x), and hence f(-x)g(-x) = f(x)g(x), so that
f(x)g(x) is even.

17. Yes, The function is increasing in the interval 1 ~ x < m,
decreasing in the interval _m < X < -1, and constant in the
interval -1 < x < 1.

18. Yes. The graph has corners at the points (-2,3), (-1,2) and
(0,3). The function is increasing in the interval -1 < x < m

and decreasing in the interval _m < X < 1.

sec. 2.4

1.
a(xO + h)2 + b(xO + h) + c - ax~ - bxO - c

f' (x ) = lim ho h+O

2axOh + ah2 + bh= lim h = lim (2axO + b + ah) = 2axO + b.
h+O h+O



2.
(xO + h)3 - X~

f' (x ) = lim --'---h----
o h"'O
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4.

6.

= lim (3X~ + 3xOh + h2) 2
h"'O

3xO•

For example, if f(x) 2 then f' (xO)x ,
(b) 1; (d) O.
(a) 1; (c) 2.

o or 2.

11. If If(x) - AI is "arbitrarily small," then so Ilf(x)1 - IAII,
since I If(x) I - IAII ~ If(x) - AI, by Sec. 1.5, Prob. 10. The
converse is false; for example, lim l!1 does not exist

x.•.0 x
(Example 2.45e), but lim 1l!11 = 1.

x.•.0 x

Sec. 2.5

2. 6(u + v) = [u(x + 6x) + v(x + 6x)] - [u(x) + v(x)]
= [u(x + 6x) - u(x)] + [v(x + 6x) - v(x)] = 6u + 6v.

3. Here f(x) mx + b, f(xO) = mxO + b, f' (xO) = m, so that (3)
becomes y m(x - xO) + mxo + b mx + b.

5. Yes,
that

2 2the tangents at any pair of points (xl,Xl), (x2,x2)
xlx2 = - j are perpendicular. No.

such

9. (b) 6y

(d) 6y

of 6y.

0.331, dy = 0.3, E = 0.031, about 9% of 6y;

0.003003001, dy = 0.003, E = 0.000003001, about 0.1%

13. In the intervals _00 < x < -1, -1 < x < 1, 1 < x < 00. At the
points (-1,2), (1,2).

14. If S is the surface area of the earth and R its radius (~ 4000
miles), then S = 4nR2• Therefore 6S ~ dS = 8nR6R = ~ square
miles.
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Sec. 2.6

1. Let g(x) _ c.

4.

3.

6.
11.

oWe get the indeterminate form 0
(b) -3~ (d) 23.
3

- '2
If If(x) - AI is "arbitrarily small" both for all "sufficiently
small" Xo - x > 0 and all "sufficiently small" x - Xo > 0, then
If(x) - AI is "arbitrarily small" for all "sufficiently small"
Ix - xol > 0, and conversely.

12. Use Prob. 11.
14. Use Sec. 2.4, Frob. 11.

Sec. 2.7

1. (b) 6ax2 - 2bx; (d) 1 4 9- 2" 3" 4'
x x x

2. (b) 3x2 - 2(a + b)x + ab~ (d) 6x2 - 26x + 12.

2(1 + x2) 2 - 4x + 13. (b) (d) x
(1 _ x2)2 2(x - 2)

5. If n is odd and tn = x, then (_t)n
6. If n is odd, then rl=X)m = (- nlX)m

-x, so that nl=X _ nIX.

7. Use Prob. 6 and the fact that division by zero is impossible.
8. (b) __ 1_

3;J;4
2

(d) 3.-.
3 '\7x

f'''g+ 3f"g' + 3f'g" + g'''.
The tangent T to the curve y = (xO,l/xo)

Therefore T
l/x at the point FO

x
O
) + .1:..= - ~ + 2-Xo 2 XoXo

y-intercept 2/xO. Now use Sec. 1.7,

1- 2" (x -
Xo

2xO andhas x-intercept

has equation y =

11.
13.

Frob. 6.
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14. By Sec. 2.66, 9 is continuous at x. But g(x) i 0, by
hypothesis, and hence g(x + bx) ~ 0 for all "sufficiently
small" Ibxl, by Sec. 2.4, Probe 15.

Sec. 2.8

2. Use the fact that I:K is an increasing function.

1. (a) 2(x + 2) (x + 3)2(3x2 + llx + 9); (c) 7 - 3x
(1 - x)3

(b)

5.

6.

7.

dFor example, if f is even, then fe-x) - f(x), so that ax fe-x)
= d~ f(x), and hence -f' (-x) = f' (x) or f' (-x) _ -f' (x).

(!.)' (f !)' f'! + f(- ~)g' f'g - fg'
9 9 9 9 g2

1

(1 - x)"h - x2
10. 1Note that x(l _ x) ! + 1

x r=-x
12.

16.

Y' = 2x +, y' I - 2-, x=l y=O - - •x + 3y ,

n-1 m-1ny y' = mx , and therefore y'

_ m (m/n)-l
-ilx .

18. Solving the quadratic equation (14) for y, we get
1 (xr"'4 2 and hence y' = ~ (1 + 3x ) , so thaty = '2 3x ),

';4 - 3x2

Y'lx=l = ~ (1 + 3) = -1, 2 when y1x=1 = 1 (1 r 1) = 1, O.'2 ,

equation
a3Tr < o.

20. In the theory of equations, it is shown that the cubic
3 b2y + ay + b = 0 has three distinct real roots if Ir +

There is only one real root if
investigate equations (II) and

> O. Use this to
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Sec. 2.9

1. (b) -1.
2. (b) CD.

4. The limit is a product of five limits, all equal to 1
5"

7. x < -1000.
9. (b) x = -d/c, y = a/c.

10. f(x) - 1 , where the constants- (x - a1)(x - a2)"'(x - an)
a1,a2, •••,an are all different.

12. Consider the separate branches of the function graphed in
Figure 15.

13. (b) 0; (d) No limit.
15. 20.

.!!. (b) 1: + 2: + 3: + 4: + 5: + 6: 1 + 2 + 6 + 24 + 120 + 720

and so on. Therefore sl = xl >

= 873.

19. (b) 1.

1
n

112 1
x3 + x4 = 3" + '4 > '4 = 2

114 1
8"+8"=8"=2'

1xl + x2 > 2.~

12'
j>j+j+

1
2 ' s2

1, x2 =

!+!+6 7

Then xl =
1x5 + x6 + x7 + x8 = 5" +

22.

and so on. Thus the sequence sn is unbounded and hence

divergent.
~. No, as shown by the example of the harmonic series.
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Chapter 3

Sec. 3.1

2. v = t2 - 4t + 3, a = 2t - 4. The direction of motion changes
at t = 1 and t = 3. The particle returns to its initial
position at t = 3.

5. 128 ft. 240 ft.
8. Differentiating (8), we find that the velocity after braking is

Vo - kt. Hence it takes a time equal to vO/k to bring the car
to a stop, during which it travels a distance equal to

1 2 1 2vO(vO/k) - ~ k(vO/k) = ~ (vO/k).

10. The flywheel stops rotating when t

Sec. 3.2

b/2c.

2.

4.

90 :::25 mi/hr.
ill

x increases faster if x < 4, y increases faster if x > 4,
x and y increase at the same rate if x = 4.

6. 2 ft/sec. No.
8. The curve of marginal cost is the straight line

MC(Q) = a - 2mQ.
11. .s ft2/min.

Sec. 3.3

1. (b) No maximum, a minimum equal to 1 at x 1; (d) No extrema.
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2. (b) A maximum equal to 1 at x = 1, a minimum equal to 0 at

every point of (0,1); (d) No maximum, a minimum equal to 0 at

every point of (0,1).
3. If f is increasing in [a,b], f has its minimum at a and its

maximum at b, while if f is decreasing in [a,b], f has its

maximum at a and its minimum at b.

6. No.

Sec. 3.4

2. f is not differentiable at x o.
4. (1,1), (-1,-1) •

6. et = 1 - l:...::: 0.42.
I!

8. 1 11.c = '2 ,

Sec. 3.5

2. (a) !. x4 + c. (c) 2~ + c.4 ' 3'

5. (b) x - 3x2 + 11 3 3 4 + c;"Tx - '2 x

(d) !. x3 ~ x7/2 + 3 x4 2 9/2 + c.3 7 4' 9x

7. No.

8. (a) Increasing in (-=,~], decreasing in [~,=); (c) Increasing

in [-1,1], decreasing in (-=,-1] and [1,=).

Sec. 3.6

2. (b) Maximum y 9 at x4'
1
'2 •
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~, minimum y = 0 at
3. (a) Maximum y 1 at x = t1, minimum y

extremum at x = 0, maximum y = ~44at x
x = 1.

Oat x = 0; (c) No

4. (b) Maximum y = 100.01 at x = 0.01, 100, minimum y = 2 at x 1;
(d) Maximum y = 132 at x = -10, minimum y = 0 at x = 1, 2.

5. 13x - x31 has its maximum in [-2,2] at the points x = t1, t2.

7. Minimum y = 0 at x = 0 if m is even and no extremum at x = 0
ifm is odd, maximum y = mI)nn/(m + n)m+n at x = m/(m + n) ,
minimum y = 0 at x = 1 ifn is even and no extremum at x = 1
if n is odd.

9. Solve the equations y1x=2 = -1, y'lx=2
Then show that y" Ix=2 < O.

Sec. 3.7

1. True.

o to get a 1, b O.

2. For example, if f(x) g(x) = 4x , h(x) = 4-x , then f"(O)
g" (0) = h" (0) = 0, but f has an inflection point at x = 0,

g is concave upward at x
3. No.

0, h is concave downward at x = O.

5. Inflection points at x = 0, t3a, concave upward in (-~,-3a),
concave downward in (-3a,0), concave upward in (0,3a), concave
downward in (3a,~).

7. a = - i ' b = ~

10. The points ha~e abscissas 1, -2tl!, the solutions of the
equation x3 + 3x2 - 3x - 1 = O.

13. Reread Secs. 3.33b, 3.64a and 3.72.
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Sec. 3.8

4.

7.

8.

11.

13.

No, even if the buggy is much faster than the boat.
1x = n (xl + x2 + ••• + xn).

If n(Q) has a local extremum at Q = QO' then n' (QO)
R' (QO) - c' (QO) = MR(QO) - MC(QO) = 0, so that MR(QO)
MC (QO)' This extremum will be a maximum if n" (Qo)
R" (Qo) - c" (Qo) < 0, that is, if MR' (Qo) < MC' (QO)'

Overhead is positive, and hence d > O. The marginal cost is
MC(Q) 3aQ2 + 2bQ + c, with first derivative MC' (Q)

= 6aQ + 2b and second derivative MC"(Q) = 6a. Therefore MC(Q)
has a local minimum at QO = -b/3a if a

3ac -hence b < O. Moreover, MC(QO) = 3a

> O. But QO > 0, and
b2 > 0, and hence

b2 < 3ac, which, in particular, implies c > O.
16. Let the sides of the angle be the x-axis and the line y = rnx.

The line through P (a,b) with slope A intersects the x-axis
in the point (aA i b,o) and the line y = rnx in the point

( aA - b m aA - b )
X m' X-m'

m(aA - b)2/2A(A - m).
17. Choosing A = (a,b), P

forming a triangle of area

(x,O) and B = (c,d), minimize

light can be cancelled out). The minimum is achieved when x
.. x-a c-xsatisfies the cond1t10n -rAPT = -rPBT .

triangles.

Now use similar
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Chapter 4

Sec. 4.1

1. (b) 1.

2. The global maximum of f in [a,b], whose existence is
guaranteed by Theorem 3.32c.

1. No. Yes, since the number of subintervals cannot be less than
the integral part of (b - a)/~.

5. If f(x) = c, the region bounded by the curve y = f(x), the
x-axis, and the lines x = a and x = b is a rectangle of length

b b
b - a and width C1 then A = f f(x)dx = f cdx = c(b - a), by

a a
(6) and (11). If a = 0, f(x) = cx, the region bounded by the

= b is a
b

= J cxdx
oa

curve y = f(x), the x-axis, and the lines x = 0 and x
b

right triangle with legs band Cb1 then A = J f(x)dx

= i cb2 = i b'cb, by (6) and (12). Both results are in keeping

6.

with elementary geometry.
4 4

A = I [f(x) - g(x)]dx = J
2 2

4

(x - l)dx = f xdx -
2

4

f dx
2

1 2 2 1
= ~ (4 - 2 ) - (4 - 2) = 6 - 2 = 4. But A = ~'2(1 + 3), by

elementary geometry.
8. f(x) is continuous in every such interval.
!!. (a) Use the same argument as in Example 2.45e, noting that

f(x) takes both values land -1 in every deleted neighorhood
of c, since every such neighborhood contains both rational and
irrational points (this is a consequence of Sec. 1.5, Probe 13).
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Sec. 4.2

1.

3.

2. (b) 6; (d) 1.

1

n ; 1 J
-1

6. 9
2" •

b

8. b: a J xdx
a

12" (a + b).

10. Yes, provided that x > o.
14. (a) 0; (c) feb).

16. Choose A = 0 in Prob. 15.
18. Clearly f(c) > O. Suppose a < c < b. Then there is an

interval [c - o,c + 0] such that f(x) > 0 for every
x E [c - o,c + 0] (why?). By Theorem 4.21a,

b

J f(x)dx
a

c-o
J
a

c+o
f(x)dx + J

c-o

b

f(x)dx + J
c+o

f(x)dx •

The first and third integrals on the right are nonnegative, by
Prob. 16, while the second integral is positive, by the mean
value theorem for integrals. Therefore the integral on the
left is also positive. The proof is even simpler if c = a or

c = b.
~. Use Prob. 18.
20. Apply Prob. 18 to the function f = f1 - f2•
22. Use Prob. 17, noting that -If(x) I ~ f(x) ~ \f(x)I, where, by

Sec. 2.6, Prob. 14, \f(x) I is continuous and hence integrable
in [a,b].
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23. The assertion is obviously true if f is a constant function.
Otherwise f takes values between its maximum M and its
minimum min [a,b]. But then M - f(x) > 0 at some point in

b

[a,b], and hence J [M - f(x)]dx > 0, by Prob. 18, or
a

b

equivalently b ~ a J f(x)dx < M. In the same way, we find that
a

b
m < b ~ a J f(x)dx. Continuing as in the proof of Theorem

a

4.22a, we observe that the point c is now known to lie between
the 'points p and q at which f takes its maximum and minimum,
so that c E (a,b).

Sec. 4.3

1. Because r = -1.
3.

4.

5.

(b) x > 1-
(b) ln x + 11 (d) 1

x In x
(b) 4x (d) 1

41 - x "II + x2

7. The tangent has equation y = x/e.
9. x ln x - x is an antiderivative of ln x.

11. Increasing in [-1,0) and [l,~), decreasing in (0,1] and
(-~,-l] •

13. Inflection points at x = fl, concave downward in (-~,-l),
concave upward in (-1,1), concave downward in (l,~).

14. (b) 2 < x < 3.
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15. Use (12), (8) and (9), noting that In a > 0 if a > 1, while

In a < 0 if 0 < a < 1.

17. Let f(x) = In x. Then In b - In a

where a < c < b.

Sec. 4.4

(b - a) f' (c) b - a
c

1. .If c = In k, then kex c x c+xe e e

2. (b) -3x (d) eX(l _ 2x _ x2).-3e ;

3. (b) 2ex (d) eX
(ex + 1)2 2-11+ eX

5. eax/a is an antiderivative of eax

7. Maximum y 1010e-9 at x = 9, minimum y

10. x = 1, 2,

12. (b) 2xex
2

In a; (d) - lOx In 100
(1 + lOx) 2

o at x 1.

15.

17.

x = .!. (2Y - 2-Y) ,
2

10
The function ~ has its maximum at x

2x

compare Y14 with Y1S'

1~02 ::14.4. Now

Sec. 4.5

.!.. (b) e.

2. (b) 2e •

3.
log (1 + x)

lim a
x+O x

4.36b).

1 lim In(lx+ x) ="lnla = log e (SecIii"""ii" x+O a'
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5. xr - 1lim x-Ix"'l
er1nx _ 1 r In x

;:~ r In x x - I 1 1. In xr n e. 1m x:=-rx.•.l

= r lim In(l + t)
t.•.O t

r.

6.
8.

10.

13.

(b) In 4.

1~ In 2 ~ 6.93%.
$7,408.18

ex2+2X
(b) ---- (2X + 2 - :x - x lInx )x4/3 In x .JX

14. (b) x1/x 1 -21n x
x

15. y" is nonvanishing.
17. ax.

19. If Y = f(x), then €yx

elasticity ~ (xy), =
xy

= ~ Sl The function xf(x) = xy hasy dx •

! (y + xy') = 1 + ~ Sl = 1 + €
Y Y dx yx'

22. The sum of 8 terms of the series is 2.71825 •.•

Sec. 4.6

2. Let x = -to

3. Let x 1 - t.
2

4. (b) t eX + C~ (d) ~ (1 + In x)3/2 + C.

5. (b) t Inlx2 + 2x - 31 + C~ (d) t In(e2x + 1) + C.

7. 1e-=-r .
8. (b) 3 x 3x2ex + 6xex - 6ex + C~x e -

(d) 2 3/2 In x - 4 3/2 + C.3'x '9x

10. (b) 1; (d) e - 2.

13. (b) 1 12x- ~I+ c.tr In 2x +
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16. t2 1 ., 2Note that x = 2~ ' ~1 + x t2 + 1
2t ' dx

17. f
e3x + 1 f 2 x(a) ------- dx = (e x - e + l)dx
eX + 1

(c) I x
2

2 dx = f (-1 + ~ 1 ~ x + ~ 1 : x) dx
1 - x

= -x + ~ Inl~ ~ ~I+ c.
22. Divide the price range [P1,POl into n equal small units

6P = ~ (PO - Pl), where 6P is just large enough so that each
successive price drop causes more of the commodity to be sold.
Let 6Qi be the extra quantity sold when the price is lowered
from Po - (i - 1)6P to Po - i6P. Then the total revenue
received in the course of the staged price drop is just
n

~ (PO - i6P)6Qi, which approximates the integral in (25). To
i=l
convert (25) into (26), integrate by parts.

23. lOOPO (1 - ~) :::26.4PO•

Sec. 4.7

2. 1
(a) 2" 1

(c) ln 2 •

4.
7.

(a) Divergent;
By Prob. 3, l\.=

(e) 6.

1--1-
1 - '!

8. By Sec. 4.6, Prob. 15, l\.

lim
X+oo

00!(cosh x - sinh x)dx

J (cosh x - sinh x)dx = i~~Ginh X - cosh ~:
a

1 + lim (sinh X - cosh X)
X+oo

1 + lim (-e-X)
X+oo

1.
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Chapter 5

Sec. 5.1

2. Y 2/x.
4. Y (x In x - x + 1)2.
6. Y } x2(ln x - ~) + Clx + C2•

1 - x29. Y 2x

Sec. 5.2

2. 4.8 billion. 6.9 billion.
4. 20 In 2 :::48 yrs.4In 3'

6. (a), (b) and (c) follow at once from formula (13)• To prove
(d),differentiate (11), obtaining N" = rN' - 2sNN'
= (r - 2sN)N' = (r - 2sN) (r - sN)N, where the expression on
the right is positive for N < r/2s, zero for N = r/2s, and
negative for r/2s < N < r/s. Now use Sec. 3.72, Proposition (4).

7. Per capita consumption is constant if r = s, grows
exponentially at the rate of r - s percent per year if r > s,

Applying the initial condition Nlt=o = NO' we

and decays exponentially at the rate of s - r percent per year
if r < s.

3 In 10~ = 5 :::1.4 per meter.
dN* rtThen en: = rN*, and hence N* = Ce , orLet N* = N + !!.r

N = Cert - !!. .r
get C = NO + !!. .r
About 2310 yrs.

9.

11.

13.
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Sec. 5.3

2. sl - So F (tl - to)'Vo = tl - to -S

4. 64 ft/sec. 4 sec.

6. The truck has more kinetic energy in the first case, the bullet
in the second.

8. Let the fixed points be s = tao Then the force is F(s)

Hence the work done in going= -k(s .+ a) - k(s - a) = -2ks.
a

from -a to a is -2k I sds = O.
-a

About 84 mi.10.

12. vI =~v~ + 2gh, tl = (-va + vl)/g, t2 = (va + vl)g, 6t = 2vO/g.
13. Since the spider's weight mg stretches the strand by an amount

s, the tension ks in the strand satisfies the condition
ks = mg, so that k = mg/s. Therefore the potential energy of
h h d d. 1 k 2 1 (b 7) Itt e stretc e stran ~s ~ s = ~ mgs Pro. • As a resu

of the spider's climb, the potential energy of the system
consisting of the spider and the strand changes by
2mgs - imgs = lmgs, since the strand is no longer stretched
after the climb. This is the work WI done by the spider in
climbing up the strand, to be compared with the work W2 = 2mgs
done by the spider in climbing up an inelastic strand of
length 2s.
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Chapter 6

Sec. 6.1

2. (1,1,-1), (1,-1,1), (-1,1,1), (-1,-1,1).
3. (b) 14.

4. Show that the side lengths satisfy the Pythagorean theorem.
6. Complete the squares, as in Sec. 2.32b.
8. (b) The cylinder x2 + y2 = a2•
9. (b) z = 1 - Iyl (-1 ~ y ~ 1).
11. -1 < x < 1, -1 < Y < 1. The region is an "open square."

2. P1 is closer to the origin.

Sec. 6.2

2.

7.

If the limit in question exists, then lim ~ = lim =x , which is
x.•.o x y.•.O y

impossible.
1(a) 2: (c) -In 2.

9. In the first and third quadrants of the xy-p1ane.

11.

12.

13.

14.

(a) ~~ = 2xy3 + 3x2y2, ~; = 3x2y2 + 2x3y: (c) ii= - ~ e-x/y,
az _ x -x/yay-2"e .

y

(a) ~~ = yzeXYz, ~~ = xzeXYz, ~ = xyexyz: (c) ti = ~ (xy)Z,
au z z au zay = y (xy) , az = (xy) 1n (xy).

(b) (1 + 3xyz + x2y2z2)exyz.
a2z _ a 1 a 1 _ a2z

(b) axay - ax y = 0 ay x - ayax .
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15. (b) H(x,y) = (x + lix)(y + liy)- xy = ylix+ xliyis of the form
(8) with A = y, B = x, a. (lix,liy)= S(lix,liy)= o.

16. (b) dz = yX 1n y dx x-1+ xy dy.
17. (b) 108.432.

r = "fy2 2 au a2 1 2x218. Let x ~ =+ y . Then ax = - 2" , - r2 + "7r ax
Interchanging the roles of x and y, we get

~. No, since the partial derivatives fx(O,O) and fy(O,O) do not
exist (why not?).

Sec. 6.3

!.. (b) O.
~.. (b)'~~ = 2 ~ =- 2

x , ay y
3. (b) ~= az .:t... az ~= x~+ 1 az

ax y au - x2 av , ay au x av
5. (b) 1; (d) O.

8. If F(u,v) = J f(t)dt, then ~ = f(v), by Theorem 4.23a, while
u

u*= - iii f f (t)dt
v

dF aF du + aF dv h-f (u). But ax = au dx av ax ' by t e

chain rule and hence ~ = ~ VIX)
dx

u(x)

f(t)dt

dv du= f(v(x» dx - f(u(x» dx •
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Sec. 6.4

l- (a) No extrema: (c) Minimum z = 0 at (x,y) (0,0), no

extrema at (x,y) (1,:!:4) , 5= (-'1,0).

2. (a) Maximum z = 864 at (x,y) = (-6,0) , minimum z = -864 at
(x,y) = (6,0), no extrema at (x,y)
z = 0 at every point of the line y

(0,:!:616): (c) Minimum
x + 1.

3. Maximum z = 4 at (x,y) = (:!:2,0), minimum z = -4 at

7.
(x,y)

Let u

(0, :!:2) • ...
I'

+ xn - nc).
Then, at any critical point,

ilu* _~ - xl ••• xn-l - ~
n

so that

which implies Xl = ..• = xn = c.

- ~ 0,

8. Maximize u = ~x x ••• x subject to the condition
1 2 n

13.
1The profit is maximized when 01 = ~ (Pl - P2 + 4q),

02 = i (P2 - Pl + 4q). The absolute value of the price
difference must not exceed 4q.



Abscissa, 21
Absolute value, 14
Absorption coefficient, 198
Acceleration, 102
due to gravity, 35, 102, 201

Air resistance, 202
Algebraic sum, 74
Angle of incidence, 136
Angle of reflection, 136
Annual interest rate, 166
elIective, 171
nominal, 171

Antiderivative, 117
existence of, 147
general, 118

Area
between a curve and the x-axis, 137
between two curves, 141-142
negative, 143
under a curve, 137

Arguments (of a function), 36
Arithmetic mean, 14
Asymptote, 93
horizontal, 93
vertical, 93

Average, of a function, 147
Average velocity, 100
Averaging time, 100

Base ot natural logarithms (e), 156
Bell-shaped curve, 253
Birth rate, 194
Boundary, 213
Boundary conditions, 191
Bounded sequence, 94

Calculus
differential, 54 II.
first key problem of, 2, 54
fundamental theorem of, 149
integral, 137 II.
second key problem of, 2, 54

Cauchy, A. L., 55
Chain rule, 84, 223
Change of variables, 173
Closed interval, 17
continuous image of, 109

Closed region, 213
Completing the square, 47.

286

INDEX

Composite function, 43
continuity of, 85
derivative of, 83

Compound amount, 167
Compound interest, 166
. Concavity

downward, 127
in an interval, 127
at a point, 127
tests for, 128
upward, 127

Conservation of energy, 204
Constant(s), 31 II.
of integration, 118
vs. variables, 35

Constraint, 231
Consumer's surplus, 180
Continuity, 68 II.
in a closed interval, consequences of, 109-111
of a composite function, 85
as a consequence of differentiability, 72
of functions of several variables, 216
geometrical meaning of, 71
in increment notation, 73
in an interval, 68, 72
of an inverse. function, 82
from the left, 69
at a point, 68, 216
of a polynomial, 69
of a rational function, 70
in a region, 216
from the right, 69

Continuous function(s), 68 ff.
algebraic operations on, 68-71
integrability of, 143
inverse of, 82
product of, 68-69
properties of, 109-111
quotient of, 68
sum or dilIerence of, 68-69

Convergent improper integral, 181, 182
Convergent sequence, 94
Coordinate axes, 20, 208
positive directions of, 20, 208

Coordinate planes, 209
Coordinates, 15 ff.
on a line, 15
origin of, 5, 20, 208
in a plane, 21
rectangular, system of, 46
in space, 209



Cost
average, 107
elasticity of, 172
marginal, 1, 106-107,234
total, 106, 233

Cost function, 106-107,233.
cubic, 107, 136

Counterclockwise direction, of quadrants, 21
Critical point, 123, 229
Cubical parabola, 49
Curve(s), 47 ff.
area between two, 141-142
area under, 137-138
inflection point of, 49, 129
sketching of, 47, 129
symmetric, 49
tangent to, 49, 55

Death rate, 194
Decay constant, 1%
Decimals, 8
nonrepeating, 8
repeating, 8
terminating, 8

Decreasing function
exponentially, 192
in an interval, 50-51, 120
in a neighborhood, 113

Decreasing sequence, 94
Definite integral(s), 137ff.
evaJ.uationof, 142-143, 149-150, 173-178
existence of, 139, 143
vs. indefinite integral. 140
properties of, 144-145

Definite integration. 140
Deleted neighborhood. It!. ~14
Delta-neighborhood. It!
deleted, 18

Demand,l08
elastic, 170
elasticity of, 170
inelastic, 170

Dependent variable, 36 ff.
differential of, 64, 220
increment of, 59
value of, 36

Derivative(s), 2, 53 ff.
of a composite function, 83
of a constant function, 55
higher, 79
of an inverse function, 81
logarithmic, 168
nth,79
of the nth power of x, 77-78
of order n. 79
partial (see Partial derivatives)
of a polynomial, 77
of a product, 75
of a quotient, 76
of the rth power of x, 78, 163
second,79
of a sum or difference, 74
third,79

Difference quotient, 53, 59
Differentiability
in an interval, 63
at a point, 63
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Differentiable functions, 63 ff.
properties of, 112-116
of several variables, 219

Differential(s), 64, 219
of the dependent variable, 64
of a function, 64, 219
of the independent variable(s), 65, 220
total, 219

Differential equation, 1, 186ff.
first-order, 186
homogeneous, 192
initial conditions for, Ig8, 190, 191, 200
of order n, 186
order of, 186
partial, 222
second-order, 190
with separated variables, 189
solution of, 186
general, 187, 190
particular, 187, 190

Differentiation, 63 ff.
implicit, 86-87
logarithmic, 167-168
operator, 65
partial, 216
rules, table of, 238

Discontinuity, removal of, 70
Discontinuous function, 68
Distance
between a point and a line, 34
between two points
on a line, 15
in n-space, 210
in a plane, 22
in space, 210

Distance function, 100
Divergent improper integral, 181, 182
Divergent sequence, 94
Division by zero, impossibility of, 5, 10
d notation, 65
Domain, 37,41
of a function of two variables, 213
Double limit, 216
Doubling time, 193
Dummy index, 96, 140
Dummy variable, 140

e (base of natural logarithms), 156, 165-166
Elasticity, 168
of cost, 172
of demand, 170

Element (of a set), 2
Empty set, 3
End of proof symbol, II
End points, 17
Energy
conservation of, 204
kinetic, 203
potential, 204
total, 204

Epsilon-delta language, 55 ff.
Equation of motion, 100
Error of approximation, 64
Escape velocity, 206
Even function, 49
Even number, 5
Excise tax, 134
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Exponential growth and decay, 192
Exponential law, 192
Exponential(s), 159ff.
to the base a, 161-162
to the base e, 159
graph of. 161
properties of, 159-161
table of. 236

Extreme value, 110
Extremum (extrema), 110ff.
absolute, 122
constrained, 232
global, 110, 122, 228
local, 110, 121-126, 228
first derivative test for, 124, 228
necessary condition for, 123,228
second derivative test for, 125, 228

relative, 122
unconstrained, 232

Fermat's principle, 136
Fibonacci sequence, 45
Finite interval, 19
Finite region, 213
Finite set, 42
First derivative test, J 24
Force, 199
Fractions, 5
Function(s), 36 ff.
algebraic operations' on, 44-46
arguments of, 36
asymptote of, 93
average of, 147
composite, 43
concave downward, 127
concave upward, 127
continuous (see Continuous functions)
critical point of, 123
decreasing, 50-5 I
derivative of, 53, 63
differentiable, 63
differential of, 64
differentiation of, 63
discontinuous, 68
domain of, 37, 41, 213
elasticity of, 169
even, 49
formal definition of, 41
graph of, 46, 211
identically equal, 42
increasing, 50-5 I
increment of, 64
inflection point of, 127
integrable, 139
inverse, 39
limit of, 55
as a mapping, 41-42
mean value of, 147
notation for, 37
numerical,42
of n variables, 36, 210
odd, 50
one-to-one-; 39
of one variable, 36
parity of, 50
piecewise linear, 48
range of, 38

Function(s) (Continued)
rate of change of, 53
rational, 69
of several variables (see Functions of several
variables)

stationary point of, 123
sum of, 44
value of, 37, 41
vanishing, 113

Function(s) of several variables, 36, 210 ff.
continuous, 216
critical point of, 229
differentiable, 219
differential of, 219
domain of, 37, 39, 213
extrema of, 228-233
graph of, 211
homogeneous, 227
increment of, 219
limit of, 215
partial derivatives of, 216
stationary point of, 229
value of, 37, 39

Fundamental theorem of calculus, 149

General solution, 187
arbitrary constants in, 187, 190

General term, 44
Geometric mean, 14
Geometric series, 97
sum of, 97

Global extrema, 110, 122,228
Graph
asymptotes of, 93
of a continuous function, 71
of a discontinuous function, 71
of an equation, 46, 211
of a function, 46, 21I
of a one-to-one function, 5I
symmetric
in the origin, 49
in the y-axis, 49

Gravitation, 2, 205
Greek alphabet, 235
Growth rate, 193
proportional, 193

Half-life, 197
Harmonic series, 99
Higher derivatives, 79-80
Homogeneous functions, 227
degree of, 227
Euler's theorem on, 227

Hooke's law, 206
Hyperbolic cosine, 172
graph of, 254

Hyperbolic sine, 172
graph of, 254

Identical equality, 42
Identity, 43
Implicit differentiation, 86-87
Improper integral(s), 181-184
convergent, 181, 182
divergent, 181, 182



Improper integral(s) (Continued)
evaluation of, 183-184
vs. proper integral, 181

Inclination, 25
Increasing function

exponentially, 192
in an interval, 50-51, 120
in a neighborhood, 112

Increasing sequence, 94
Increment(s)

of the dependent variable, 59
approximated by differential, 64-65, 220-221
of a function, 64, 219
of the independent variable(s), 59, 65, 220
notation for, 59, 64; 219

Indefinite integral(s), 118ff.
vs. definite integral, 140-141
evaluation of, 118-119, 173-178
existence of, 148
properties of, 119

Indefinite integration, 118
Independent variable(s), 36 ff.

differential(s) of, 65, 220
increment(s) of, 59, 65, 220
value(s) of, 36

Indeterminate form, 52, 56
Index of summation, 96 '

dummy, 96, 140
Induction, mathematical, 8-9
Inequalities, 1, 10-13

greater than, 10
greater than or equal to, 12
less than, 10
less than or equal to, 12

Infinite branches, 92
Infinite interval, 19
Infinite limits, 90
Infinite region, 213
Infinite sequences (see Sequences)
Infinite series (see Series)
Infinite set, 42
Infinity, 19

limits at, 90
minus, 19, 89
plus, 19,89

Inflection point, 127
necessary condition for, 128
tests for, 128

Initial conditions, 188, 190, 200
vs. boundary conditions, 191

Initial value, 192
Instantaneous velocity, 100-101
Integers, 5

negative, 5
positive, 5

Integrability, 139
of continuous functions, 143

Integrable function, 139
Integral part, 13

graph of, 245
Integral sign, 118
Integral(s), 2, 118-119, 139ff.

definite (see Definite integrals)
improper (see ImprOper integrals)
indefinite (see Indefinite integrals)
mean value theorem for, 145
proper, 181

Index 289

Integrand, 118, 140
Integration

constant of, 118
definite, 140
indefinite, 118
interval of, 140
lower limit of, 140
by parts, 176-178
by substitution, 173-176
upper limit of, 140
variable of, 118, 140

Interest
compounded N times per year, 166
contilJuously compounded, 166-167
rate of, 166

Interior point, 113
Intermediate value theorem, III
Intersection (of two sets),' 3
Interval, 17 ff.

closed, 17
continuity in, 68, 72
differentiability in, 63
end points of, 17
finite, 19
half-closed, 17
half-open, 17
infinite, 19
of integration, 140
length of, 17
open, 17
partition of, 139

Inverse (function), 39
continuity of, 82
derivative of, 81

Inverse square law, 205
Irrational numbers, 6

decimal expression of, 8
Irrationality ofV2, 6-7
Iterated limit, 216

Jump discontinuity, 71

Kinetic energy, 203
conservation of, 204

Lagrange multiplier, 232, 233
Laplace's equation, 222
Law of reflection, 136
Left-hand limit, 71
Leibniz, G. W., 1
Limit(s), 1, 51 ff.

algebraic operations oli, 66-68
definition of

in epsilon-delta language, 56
informal,55

double, 216
finite, 90
of a function of several variables, 215
infinite, 90
at infinity, 90
iterated, 216
in n dimensions, 215
left-hand, 71
one-sided,71
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Limit{s) (Colltillued)
of a product, 66-67
of a quotient, 66-67
right-hand, 71
of a sequence, 94
of a sum or difference, 66-67
uniqueness of, 58

Lines (see Straight lines)
Logarithmic derivative, 168, 193
double, 169

Logarithmic differentiation, 167-168
Logarithm(s), 153ff.
to the base a, 157
common, 157
natural, 153
base of, 156
graph of, 156
properties of, 153-157
table of, 237

Mapping diagram, 42
Marginal cost, 1,106-107,234
Marginal profit, 106
Marginal revenue, 106, 108
Mathematical induction, 8-9
Maximum
in an interval, 110
local, 121,228
strict, 122, 228

of a numerical set, 143
Mean value of a function, 147
Mean value theorem, 115
applications of, 117-120
in increment form, 115
for integrals. 145

Minimum
in an interval, 110
local, 121,228
strict, 122, 228

Minus infinity, 19,89
Monotonic sequence, 94

bounded, convergence of, 94

Neighborhood, 18, 214
deleted, 18, 214

Newton, I., 1,2
Newton's first law of motion, 200
Newton's law of cooling, 198
Newton's law of gravitation, 205
Newton's second law of motion, 199
n-dimensional sphere, 214
n factorial, 80
Nonrepeating decimal, 8
Normal cost conditions, 8
n-space, 210
points in, 210

nth derivative, 79
nth power, 51
nth root, 80, 163
Number line (see Real line)
Number theory, 5
Number(s), 4-8
decimal expression of, 8
even, 5
irrational. 6-7

Number(s) (Coll/illl/ed)
negative, II
odd, 5
positive, II
rational, 5
real, 7-8

Numerical function, 42

Odd function, 50
Odd number, 5
One-sided limits, 71
One-to-one correspondence, 7, 210
between real numbers and decimals, 8
between real numbers and points' of line, 7
between sets, 42

One-to-one function, 39
continuous, 82

Open interval, 17
Open region, 213
Optimization problems, 131
Ordered n-tuple, 209
Ordered pair, 21
Ordered triple, 209
Ordinate, 21
Origin (of coordinates), 5, 20, 21, 208
Overhead, 107

Parabola, 49, 59, 62, 103
cubical,49
tangent to, 62

Paraboloid of revolution, 211
Parity, 50
Partial derivative(s), 216
of higher order, 217
mixed, 217
equality of, 218

second, 217
Partial differential equation, 222
Partial sum, 97
Particle, 100
Particular solution, 187
Partition, 139
fineness of, 139

Perfect-gas law, 222
Perpendicular lines, slopes of, 27
Piecewise linear function, 48
Plus infinity, 19, 89
Points
on a line, 7, 15
in II-space, 210
in a plane, 21
in space, 209
of subdivision, 137, 138

Polynomial, 69
continuity of, 69
degree of, 69
derivative of, 77

Population growth, 193-195
Positive direction, 4, 20, 208
Potential energy, 204
Present value, 166
Profit, 109
marginal, 106

Proportional changes, 168
Pythagorean theorem, 6, 22, 105, 209
converse of, 23



Quadrant( s), 21
first, 21
second,21

Q.E.D., symbol for, II

Radioactivity, 196-197
Radiocarbon dating, 199
Range (of a function), 38, 41
Rate(s)
birth, 194
of change, 1,2,53 cr.
related, 104-106

of cooling, I, 198
death, 194
growth,193
interest, 166

Rational function, 69
continuity of, 70

Rational numbers, 5
decimal expression of, 8

Real line, 7 cr.
coordinates of points on, 15
distance between two points of, 15
origin of, 5
positive direction of, 5

Real number system, 4, 7
Real numbers, 6 cr.
decimal expression of, 8

Real variable, 42
Rectangular coordinates (see Coordinates)
Recursion formula, 44
Region, 213
c1osed,213
finite, 213
infinite, 213
open, 213

Regular polygon, 4
Repeating decimal, 8
Revenue
average, 107, 108
marginal, 108
total, 106, 108

Right-hand limit, 71
Rocket, motion of, 205-206
Rolle's theorem, 113-114
rth power of x, 162-163
derivative of, 78, 163

Secant (line), 60
Second derivative test, 125
Second-order differential equation, 190
Separation of variables, 189
Sequence(s) , 43 ff.
bounded,94
convergent, 94
decreasing, 94
divergent, 94
Fibonacci, 45
general term of, 44
increasing, 94
limit of, 94
monotonic, 94
terms of, 44
unbounded, 94

In_ 291

Series, 96-97
convergent, 97
divergent, 97
geometric, 97
harmonic, 99
partial sums of, 97
sum of, 97
terms of, 96

Set(s), 2 ff.
closed, under algebraic operations, 5, 9
connected, 213
difference of, 4
elements of, 2
en;tpty,3
equality of, 3
finite, 42
infinite, 42
intersection of, 3
with n elements, 42
one-to-one correspondence between, 42
with the same number of elements, 42
subset of, 3
proper, 3

union of, 3
Side condition, 231
Slope, 24
in terms of inclination, 26
negative, 25
positive, 25

Solution set, 46, 211
Speed,IOI
Square root, 13
S-shaped curve, 195
Stationary point, 123,229
Straight line(s), 24-33
equations of, 29-31
inclination of, 25
intercepts of, 29
perpendicular, slopes of, 27
slope of, 24

Subset, 3
proper, 3

Summation notation, 96
Summation sign, 96
Surface, 211
of revolution, 215

Symmetry of a curve (or graph)
in the origin, 49
in the y-axis, 49

Tangent (of an angle), 26, 55
Tangent (line)
to a circle, 59
to a curve, 49, 55
horizontal, 123
to a parabola, 62

Terminal velocity, 203
Terminating decimal, 8
Total differential, 219
Total energy, 204
Triangle inequality, 15

Unbounded sequence, 94
Union, 3
Universal gravitational constant. 205
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Vanishing function, 113
identically, 113

Variable(s), 35 ff.
change of, 173
vs. constants, 35
dependent, 36
independent, 36
of integration, 118, 140
proportional changes in, 168
real,42
related, 35
separated, 189
separation of, 189
values of, 35

Velocity, I, 100ff.
angular, 104
average, 100
escape, 206
initial, 102, 201
instantaneous, 101
terminal, 203
true, 101

Work,203

x-axis, 20, 208
x-coordinate, 21, 209
x-intercept, 29
xy-plane, 21, 209
xz-plane, 209

y-axis, 20, 208
y-coordinate, 21, 209
y-intercept, 29
yz-plane, 209

z-axis, 209
z-coordinate, 209
Zero, 5


